Repulsion in Low Temperature \({\beta}\)-Ensembles


We prove a result on separation of particles in a two-dimensional Coulomb plasma, which holds provided that the inverse temperature \({\beta}\) satisfies \({\beta > 1}\). For large \({\beta}\), separation is obtained at the same scale as the conjectural Abrikosov lattice optimal separation.


  1. 1

    Ameur, Y.: A density theorem for weighted Fekete sets. Int. Math. Res. Not. 16, 5010–5046 (2017)

  2. 2

    Ameur, Y., Hedenmalm, H., Makarov, N.: Ward identities and random normal matrices. Ann. Probab. 43 (2015), 1157–1201. Cf. arXiv:1109.5941v3 for a different version

  3. 3

    Ameur, Y., Kang, N.-G., Makarov, N.: Rescaling Ward Identities in the Random Normal Matrix Model. arXiv:1410.4132v4

  4. 4

    Ameur, Y., Kang, N.-G., Makarov, N., Wennman, A.: Scaling Limits of Random Normal Matrix Processes at Singular Boundary Points, arXiv:1510.08723

  5. 5

    Ameur Y., Ortega-Cerdà J.: Beurling–Landau densities of weighted Fekete sets and correlation kernel estimates. J. Funct. Anal. 263, 1825–1861 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Ameur, Y., Seo, S.-M.: Microscopic densities and Fock-Sobolev spaces. J. d’Analyse Mathématique (to appear). See also arXiv:1610.10052v3

  7. 7

    Ameur, Y., Seo, S.-M.: On bulk singularities in the random normal matrix model. Constr. Approx. (to appear).

  8. 8

    Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The Two-Dimensional Coulomb Plasma: Quasi-free Approximation and Central Limit Theorem, arXiv:1609.08582

  9. 9

    Bourgade P., Erdős L., Yau H.-T.: Universality of general \({\beta}\)-ensembles. Duke Math. J. 163, 1127–1190 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  11. 11

    Caillol, J.M., Levesque, D, Weiss, J.J., Hansen, J.P.: A Monte-Carlo study of the classical two-dimensional one-component plasma. J. Stat. Phys. 28, 325–349 (1982)

  12. 12

    Can T., Forrester P.J., Téllez G., Wiegmann P.: Singular behavior at the edge of Laughlin states. Phys. Rev. B 89, 235137 (2014)

    ADS  Article  Google Scholar 

  13. 13

    Can T., Laskin M., Wiegmann P.: Fractional quantum Hall effect in a curved space: gravitational anomaly and electromagnetic response. Phys. Rev. Lett. 113, 046803 (2014)

    ADS  Article  Google Scholar 

  14. 14

    Carroll, T., Marzo, J., Massaneda, X., Ortega-Cerdà, J.: Equidistribution and \({\beta}\) ensembles. Annales de la Faculté des Sciences de Toulouse (Mathématiques), arXiv:1509.06725

  15. 15

    Ferrari, F., Klevtsov, S.: FQHE on curved backgrounds, free fields and large \({N}\). JHEP12 (2014) 086

  16. 16

    Forrester P.J.: Analogies between random matrix ensembles and the one-component plasma in two dimensions. Nucl. Phys. B 904, 253–281 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Forrester P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  18. 18

    Hedenmalm H., Makarov N.: Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. 106, 859–907 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Jancovici B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 386–388 (1981)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    Jansen S., Lieb E.H., Seiler R.: Symmetry breaking in Laughlin’s state on a cylinder. Commun. Math. Phys. 285, 503–535 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Johansson K.: On fluctuations of eigenvalues of random normal matrices. Duke Math. J. 91, 151–204 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22

    Kang, N.-G., Makarov, N.: Gaussian free field and conformal field theory. Astérisque 353, vii+136 (2013)

  23. 23

    Laskin M., Chiu Y.H., Can T., Wiegmann P.: Emergent conformal symmetry of quantum Hall states on singular surfaces. Phys. Rev. Lett. 117, 266803 (2016)

    ADS  Article  Google Scholar 

  24. 24

    Nodari, S.R., Serfaty, S.: Renormalized energy equidistribution and local charge balance in 2D Coulomb systems. Int. Math. Res. Not. 11, 3035–3093 (2015)

  25. 25

    Rougerie N., Yngvason J.: Incompressibility estimates for the Laughlin phase, part II. Comm. Math. Phys. 339, 263–277 (2015)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Saff E.B., Totik V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  27. 27

    Seo, S.-M.: Edge Scaling Limit of the Spectral Radius for Random Normal Matrix Ensembles at Hard Edge, arXiv:1508.06591

Download references

Author information



Corresponding author

Correspondence to Yacin Ameur.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ameur, Y. Repulsion in Low Temperature \({\beta}\)-Ensembles. Commun. Math. Phys. 359, 1079–1089 (2018).

Download citation