\({\Gamma}\)-Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects

Abstract

We propose and analyze a generalized two dimensional XY model, whose interaction potential has n weighted wells, describing corresponding symmetries of the system. As the lattice spacing vanishes, we derive by \({\Gamma}\)-convergence the discrete-to-continuum limit of this model. In the energy regime we deal with, the asymptotic ground states exhibit fractional vortices, connected by string defects. The \({\Gamma}\)-limit takes into account both contributions, through a renormalized energy, depending on the configuration of fractional vortices, and a surface energy, proportional to the length of the strings. Our model describes in a simple way several topological singularities arising in Physics and Materials Science. Among them, disclinations and string defects in liquid crystals, fractional vortices and domain walls in micromagnetics, partial dislocations and stacking faults in crystal plasticity.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Alberti G., Baldo S., Orlandi G.: Variational convergence of functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1, 85–107 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Alicandro R., Cicalese M.: Variational analysis of the asymptotics of the XY model. Arch. Ration. Mech. Anal. 192(3), 501–536 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Alicandro R., Cicalese M., Ponsiglione M.: Variational equivalence between Ginzburg–Landau, XY spin systems and screw dislocations energies. Indiana Univ. Math. J. 60(1), 171–208 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Alicandro R., De Luca L., Garroni A., Ponsiglione M.: Metastability and dynamics of discrete topological singularities in two dimensions: a \({\Gamma}\)-convergence approach. Arch. Ration. Mech. Anal. 214(1), 269–330 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Alicandro R., De Luca L., Garroni A., Ponsiglione M.: Dynamics of discrete screw dislocations along glide directions. J. Mech. Phys. Solids 92, 87–104 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Alicandro R., Ponsiglione M.: Ginzburg–Landau functionals and renormalized energy: a revised \({\Gamma}\)-convergence approach. J. Funct. Anal. 266(8), 4890–4907 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Ambrosio L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111(4), 291–322 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Ambrosio L., Braides A.: Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69, 307–333 (1990)

    MathSciNet  MATH  Google Scholar 

  10. 10

    Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)

    Google Scholar 

  11. 11

    Ball J.M., Bedford S.: Discontinuous order parameters in liquid crystal theories. Mol. Cryst. Liq. Cryst. 612(1), 1–23 (2015)

    Article  Google Scholar 

  12. 12

    Ball J.M., Zarnescu A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Bedford S.: Function spaces for liquid crystals. Arch. Ration. Mech. Anal. 219(2), 937–984 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Bethuel, F., Brezis, H., Hèlein, F.: Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser Boston, Boston (1994)

  15. 15

    Bonnes L., Wessel S.: Half-vortex unbinding and Ising transition in constrained superfluids. Phys. Rev. B 85(9), 094513 (2012)

    ADS  Article  Google Scholar 

  16. 16

    Braides A., Cicalese M.: Interfaces, modulated phases and textures in lattice systems. Arch. Ration. Mech. Anal. 223(2), 977–1017 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Braides A., Cicalese M., Solombrino F.: Q-tensor continuum energies as limits of head-to-tail symmetric spin systems. SIAM J. Math. Anal. 47(4), 2832–2867 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Braides A., Conti S., Garroni A.: Density of polyhedral partitions. Calc. Var. PDE 56, 28 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Brezis, H.: Degree theory: old and new. Topological nonlinear analysis, II (Frascati, 1995). In Matzeu, M., Vignoli, A. (eds.) Progress in Nonlinear Differential Equations and Their Applications, vol. 27, pp. 87–108. Birkhäuser Boston, Boston (1997)

  20. 20

    Brezis H., Nirenberg L.: Degree theory and BMO: Part I: compact manifolds without boundaries. Sel. Math. (N.S.) 1(2), 197–263 (1995)

    Article  MATH  Google Scholar 

  21. 21

    Caffarelli L.A., de la Llave R.: Interfaces of ground states in Ising models with periodic coefficients. J. Stat. Phys. 118, 687–719 (2005)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. 22

    Carpenter D.B., Chalker J.T.: The phase diagram of a generalised XY model. J. Phys. Condens. Matter. 1, 4907–4912 (1989)

    ADS  Article  Google Scholar 

  23. 23

    Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    Google Scholar 

  24. 24

    De Luca L.: \({\Gamma}\)-convergence analysis for discrete topological singularities: the anisotropic triangular lattice and the long range interaction energy. Asymptot. Anal. 96(3–4), 185–221 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25

    Dávila J., Ignat R.: Lifting of BV functions with values in S 1. C. R. Math. Acad. Sci. Paris 337(3), 159–164 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Federer, H.: Geometric Measure Theory, GrundlehrenMath. Wiss. 153, Springer, New York (1969)

  27. 27

    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel (1984)

  28. 28

    Goldman, M., Merlet, B., Millot, V.: A Ginzburg–Landau model with topologically induced free discontinuities (forthcoming paper)

  29. 29

    Hull D., Bacon D.J.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (2011)

    Google Scholar 

  30. 30

    Jerrard R.J., Soner H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. 14(2), 151–191 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31

    Korshunov S.E.: Phase diagram of the modified XY model. J. Phys. C Solid State Phys. 19(23), 4427–4441 (1986)

    ADS  Article  Google Scholar 

  32. 32

    Kosterlitz J.M., Thouless D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973)

    ADS  Article  Google Scholar 

  33. 33

    Lebwohl P.A., Lasher G.: Nematic-liquid-crystal order—a Monte Carlo calculation. Phys. Rev. A 6(1), 426–429 (1972)

    ADS  Article  Google Scholar 

  34. 34

    Lee D.H., Grinstein G.: Strings in two-dimensional classical XY models. Phys. Rev. Lett. 55(5), 541–544 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35

    Lin F.H.: Some dynamical properties of Ginzburg–Landau vortices. Commun. Pure Appl. Math. 49(4), 323–359 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36

    Longa L., Trebin H.-R.: Structure of the elastic free chiral nematic liquid crystals. Phys. Rev. A 39(4), 2160–2168 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37

    Pang J., Muzny C.D., Clark N.A.: String defects in freely suspended liquid-crystal films. Phys. Rev. Lett. 69(19), 2783–2787 (1992)

    ADS  Article  Google Scholar 

  38. 38

    Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39

    Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser Boston, Boston (2007)

  40. 40

    Sandier E., Serfaty S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41

    Schön R., Uhlenbeck K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  42. 42

    Tchernyshyov O., Chern G.-W.: Fractional vortices and composite domain walls in flat nanomagnets. Phys. Rev. Lett. 95(19), 197204 (2005)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucia De Luca.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badal, R., Cicalese, M., De Luca, L. et al. \({\Gamma}\)-Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects. Commun. Math. Phys. 358, 705–739 (2018). https://doi.org/10.1007/s00220-017-3026-3

Download citation