Communications in Mathematical Physics

, Volume 358, Issue 2, pp 705–739 | Cite as

\({\Gamma}\)-Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects

  • Rufat Badal
  • Marco Cicalese
  • Lucia De LucaEmail author
  • Marcello Ponsiglione


We propose and analyze a generalized two dimensional XY model, whose interaction potential has n weighted wells, describing corresponding symmetries of the system. As the lattice spacing vanishes, we derive by \({\Gamma}\)-convergence the discrete-to-continuum limit of this model. In the energy regime we deal with, the asymptotic ground states exhibit fractional vortices, connected by string defects. The \({\Gamma}\)-limit takes into account both contributions, through a renormalized energy, depending on the configuration of fractional vortices, and a surface energy, proportional to the length of the strings. Our model describes in a simple way several topological singularities arising in Physics and Materials Science. Among them, disclinations and string defects in liquid crystals, fractional vortices and domain walls in micromagnetics, partial dislocations and stacking faults in crystal plasticity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberti G., Baldo S., Orlandi G.: Variational convergence of functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1, 85–107 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alicandro R., Cicalese M.: Variational analysis of the asymptotics of the XY model. Arch. Ration. Mech. Anal. 192(3), 501–536 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alicandro R., Cicalese M., Ponsiglione M.: Variational equivalence between Ginzburg–Landau, XY spin systems and screw dislocations energies. Indiana Univ. Math. J. 60(1), 171–208 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alicandro R., De Luca L., Garroni A., Ponsiglione M.: Metastability and dynamics of discrete topological singularities in two dimensions: a \({\Gamma}\)-convergence approach. Arch. Ration. Mech. Anal. 214(1), 269–330 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Alicandro R., De Luca L., Garroni A., Ponsiglione M.: Dynamics of discrete screw dislocations along glide directions. J. Mech. Phys. Solids 92, 87–104 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Alicandro R., Ponsiglione M.: Ginzburg–Landau functionals and renormalized energy: a revised \({\Gamma}\)-convergence approach. J. Funct. Anal. 266(8), 4890–4907 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ambrosio L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111(4), 291–322 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ambrosio L., Braides A.: Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69, 307–333 (1990)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)zbMATHGoogle Scholar
  11. 11.
    Ball J.M., Bedford S.: Discontinuous order parameters in liquid crystal theories. Mol. Cryst. Liq. Cryst. 612(1), 1–23 (2015)CrossRefGoogle Scholar
  12. 12.
    Ball J.M., Zarnescu A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bedford S.: Function spaces for liquid crystals. Arch. Ration. Mech. Anal. 219(2), 937–984 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bethuel, F., Brezis, H., Hèlein, F.: Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser Boston, Boston (1994)Google Scholar
  15. 15.
    Bonnes L., Wessel S.: Half-vortex unbinding and Ising transition in constrained superfluids. Phys. Rev. B 85(9), 094513 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Braides A., Cicalese M.: Interfaces, modulated phases and textures in lattice systems. Arch. Ration. Mech. Anal. 223(2), 977–1017 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Braides A., Cicalese M., Solombrino F.: Q-tensor continuum energies as limits of head-to-tail symmetric spin systems. SIAM J. Math. Anal. 47(4), 2832–2867 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Braides A., Conti S., Garroni A.: Density of polyhedral partitions. Calc. Var. PDE 56, 28 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Brezis, H.: Degree theory: old and new. Topological nonlinear analysis, II (Frascati, 1995). In Matzeu, M., Vignoli, A. (eds.) Progress in Nonlinear Differential Equations and Their Applications, vol. 27, pp. 87–108. Birkhäuser Boston, Boston (1997)Google Scholar
  20. 20.
    Brezis H., Nirenberg L.: Degree theory and BMO: Part I: compact manifolds without boundaries. Sel. Math. (N.S.) 1(2), 197–263 (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Caffarelli L.A., de la Llave R.: Interfaces of ground states in Ising models with periodic coefficients. J. Stat. Phys. 118, 687–719 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Carpenter D.B., Chalker J.T.: The phase diagram of a generalised XY model. J. Phys. Condens. Matter. 1, 4907–4912 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)zbMATHGoogle Scholar
  24. 24.
    De Luca L.: \({\Gamma}\)-convergence analysis for discrete topological singularities: the anisotropic triangular lattice and the long range interaction energy. Asymptot. Anal. 96(3–4), 185–221 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Dávila J., Ignat R.: Lifting of BV functions with values in S 1. C. R. Math. Acad. Sci. Paris 337(3), 159–164 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Federer, H.: Geometric Measure Theory, GrundlehrenMath. Wiss. 153, Springer, New York (1969)Google Scholar
  27. 27.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel (1984)Google Scholar
  28. 28.
    Goldman, M., Merlet, B., Millot, V.: A Ginzburg–Landau model with topologically induced free discontinuities (forthcoming paper)Google Scholar
  29. 29.
    Hull D., Bacon D.J.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (2011)Google Scholar
  30. 30.
    Jerrard R.J., Soner H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. 14(2), 151–191 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Korshunov S.E.: Phase diagram of the modified XY model. J. Phys. C Solid State Phys. 19(23), 4427–4441 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    Kosterlitz J.M., Thouless D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973)ADSCrossRefGoogle Scholar
  33. 33.
    Lebwohl P.A., Lasher G.: Nematic-liquid-crystal order—a Monte Carlo calculation. Phys. Rev. A 6(1), 426–429 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    Lee D.H., Grinstein G.: Strings in two-dimensional classical XY models. Phys. Rev. Lett. 55(5), 541–544 (1985)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Lin F.H.: Some dynamical properties of Ginzburg–Landau vortices. Commun. Pure Appl. Math. 49(4), 323–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Longa L., Trebin H.-R.: Structure of the elastic free chiral nematic liquid crystals. Phys. Rev. A 39(4), 2160–2168 (1989)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Pang J., Muzny C.D., Clark N.A.: String defects in freely suspended liquid-crystal films. Phys. Rev. Lett. 69(19), 2783–2787 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser Boston, Boston (2007)Google Scholar
  40. 40.
    Sandier E., Serfaty S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Schön R., Uhlenbeck K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tchernyshyov O., Chern G.-W.: Fractional vortices and composite domain walls in flat nanomagnets. Phys. Rev. Lett. 95(19), 197204 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Zentrum Mathematik - M7Technische Universität MünchenGarchingGermany
  2. 2.Dipartimento di Matematica “Guido Castelnuovo”Sapienza Università di RomaRomeItaly

Personalised recommendations