Communications in Mathematical Physics

, Volume 358, Issue 2, pp 815–862 | Cite as

Length-Two Representations of Quantum Affine Superalgebras and Baxter Operators

  • Huafeng Zhang


Associated to quantum affine general linear Lie superalgebras are two families of short exact sequences of representations whose first and third terms are irreducible: the Baxter TQ relations involving infinite-dimensional representations; the extended T-systems of Kirillov–Reshetikhin modules. We make use of these representations over the full quantum affine superalgebra to define Baxter operators as transfer matrices for the quantum integrable model and to deduce Bethe Ansatz Equations, under genericity conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arutyunov G., de Leeuw M., Torrielli A.: The bound state S-matrix for \({AdS_5\times S^5}\) superstring. Nucl. Phys. B 819(3), 319–350 (2009)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Baxter R.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Bazhanov V., Lukyanov S., Zamolodchikov A.: Integrable structure of conformal field theory. II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Bazhanov V., Lukowski T., Meneghelli C., Staudacher M.: A shortcut to the Q-operator. J. Stat. Mech. 1011, P11002 (2010)CrossRefGoogle Scholar
  5. 5.
    Bazhanov V., Frassek R., Lukowski T., Meneghelli C., Staudacher M.: Baxter Q-operators and representations of Yangians. Nucl. Phys. B 850(1), 148–174 (2011)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Bazhanov V., Tsuboi Z.: Baxter’s Q-operators for supersymmetric spin chains. Nucl. Phys. B 805, 451–516 (2008)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Beisert N., de Leeuw M.: The RTT realization for the deformed \({\mathfrak{gl}(2|2)}\) Yangian. J. Phys. A Math. Theor. 47, 305201 (2014)CrossRefMATHGoogle Scholar
  8. 8.
    Beisert N., Galleas W., Matsumoto T.: A quantum affine algebra for the deformed Hubbard chain. J. Phys. A Math. Theor. 45(36), 365206 (2012)CrossRefMATHGoogle Scholar
  9. 9.
    Benkart G., Kang S., Kashiwara M.: Crystal bases for the quantum superalgebra \({U_q(\mathfrak{gl}(m,n))}\). J. Am. Math. Soc. 13, 295–331 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Berele A., Regev A.: Hook Young diagrams with application to combinatorics and to representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)CrossRefMATHGoogle Scholar
  11. 11.
    Brito, M., Chari, V., Moura, A.: Demazure modules of level two and prime representations of quantum affine \({\mathfrak{sl}_{n+1}}\). J. Inst. Math. Jussieu. (2015)
  12. 12.
    Chari V.: Braid group actions and tensor products. Int. Math. Res. Not. 2002, 357–382 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Chari V., Hernandez D.: Beyond Kirillov–Reshetikhin modules. Contemp. Math. 506, 49–81 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    Chari V., Moura A., Young C.: Prime representations from a homological perspective. Math. Z. 274, 613–645 (2013)CrossRefMATHGoogle Scholar
  15. 15.
    Chari V., Pressley A.: Quantum affine algebras. Commun. Math. Phys. 142(2), 261–283 (1991)ADSCrossRefMATHGoogle Scholar
  16. 16.
    Chari V., Shereen P., Venkatesh R., Wand J.: A Steinberg type decomposition theorem for higher level Demazure modules. J. Algebra 455, 314–346 (2016)CrossRefMATHGoogle Scholar
  17. 17.
    Clark S., Fan Z., Li Y., Wang W.: Quantum supergroups III. Twistors. Commun. Math. Phys. 332, 415–436 (2014)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Finite type modules and Bethe ansatz for quantum toroidal \({\mathfrak{gl}_1}\). Commun. Math. Phys. 356(1), 285–327 (2017)ADSCrossRefMATHGoogle Scholar
  19. 19.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Finite type modules and Bethe ansatz equations. Ann. Henri Poincaré 18(8), 2543–2579 (2017)CrossRefMATHGoogle Scholar
  20. 20.
    Felder, G.: Elliptic quantum groups. In: XIth International Congress of Mathematical Physics (Paris, 1994), pp. 211–218. International Press, Cambridge, MA (1995)Google Scholar
  21. 21.
    Felder G., Varchenko A.: Algebraic Bethe ansatz for the elliptic quantum group \({E_{\tau,\eta}(sl_2)}\). Nucl. Phys. B 480(1–2), 485–503 (1996)ADSCrossRefMATHGoogle Scholar
  22. 22.
    Felder, G., Zhang H.: Baxter operators and asymptotic representations. Sel. Math. New Ser. (2017)
  23. 23.
    Fourier G., Hernandez D.: Schur positivity and Kirillov–Reshetikhin modules. SIGMA 10, 058 (2014)MATHGoogle Scholar
  24. 24.
    Frenkel E., Hernandez D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)CrossRefMATHGoogle Scholar
  25. 25.
    Frenkel, E., Hernandez, D.: Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers. arXiv:1606.05301
  26. 26.
    Frenkel E., Mukhin E.: The Hopf algebra \({{\rm Rep} (U_q\widehat{\mathfrak{gl}_{\infty}})}\). Sel. Math. New Ser. 8(4), 537–635 (2002)Google Scholar
  27. 27.
    Frenkel E., Reshetikhin N.: The q-character of representations of quantum affine algebras and deformations of \({\mathcal{W}}\)-algebras, recent developments in quantum affine algebras and related topics. Contemp. Math. 248, 163–205 (1999)CrossRefMATHGoogle Scholar
  28. 28.
    Frassek R., Lukowski T., Meneghelli C., Staudacher M.: Oscillator construction of su(m|n) Q-operators. Nucl. Phys. B 850(1), 175–198 (2011)ADSCrossRefMATHGoogle Scholar
  29. 29.
    Gautam S., Laredo V. Toledano: Yangians, quantum loop algebras and abelian difference equations. J. Am. Math. Soc. 29, 775–824 (2016)CrossRefMATHGoogle Scholar
  30. 30.
    Gautam, S., Toledano Laredo, V.: Elliptic quantum groups and their finite-dimensional representations. Preprint arXiv:1707.06469
  31. 31.
    Hernandez D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)MATHGoogle Scholar
  32. 32.
    Hernandez D.: Representations of quantum affinizations and fusion product. Transform. Groups 10, 163–200 (2005)CrossRefMATHGoogle Scholar
  33. 33.
    Hernandez D.: Smallness problem for quantum affine algebras and quiver varieties. Ann. Sci. Éc. Norm. Supér. 41(2), 271–306 (2008)CrossRefMATHGoogle Scholar
  34. 34.
    Hernandez D., Jimbo M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148(5), 1593–1623 (2012)CrossRefMATHGoogle Scholar
  35. 35.
    Hernandez D., Leclerc B.: Cluster algebras and category \({\mathcal{O}}\) for representations of Borel subalgebras of quantum affine algebras. Algebra Number Theory 10(9), 2015–2052 (2016)CrossRefMATHGoogle Scholar
  36. 36.
    Jimbo M., Konno H., Odake S., Shiraishi J.: Quasi-Hopf twistors for elliptic quantum groups. Transform. Groups 4(4), 303–327 (1999)CrossRefMATHGoogle Scholar
  37. 37.
    Kac V.: Infinite dimensional Lie algebras, 3rd ed. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  38. 38.
    Kazakov V., Leurent S., Tsuboi Z.: Baxter’s Q-operators and operatorial Bäcklund for quantum (super)-spin chains. Commun. Math. Phys. 311, 787–814 (2012)ADSCrossRefMATHGoogle Scholar
  39. 39.
    Konno, H.: Elliptic quantum groups \({U_{q,p}(gl_N)}\) and \({E_{q,p}(gl_N)}\). Adv. Stud. Pure Math. arXiv:1603.04129
  40. 40.
    Leclerc, B.: Quantum loop algebras, quiver varieties, and cluster algebras. In: Representations of Algebras and Related Topics, EMS Series of Congress Reports, European Mathematical Society, Zürich, pp. 117–152 (2011)Google Scholar
  41. 41.
    Mukhin E., Young C.: Affinization of category \({\mathcal{O}}\) for quantum groups. Trans. Am. Math. Soc. 366(9), 4815–4847 (2014)CrossRefMATHGoogle Scholar
  42. 42.
    Nakajima H.: t-analog of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)CrossRefMATHGoogle Scholar
  43. 43.
    Perk J., Schultz C.: New families of commuting transfer matrices in q-state vertex models. Phys. Lett. 84 A, 407–410 (1981)ADSCrossRefGoogle Scholar
  44. 44.
    Tsuboi Z.: Analytic Bethe ansatz and functional equations for Lie superalgebra sl(r + 1|s + 1). J. Phys. A Math. Gen. 30, 7975–7991 (1997)ADSCrossRefMATHGoogle Scholar
  45. 45.
    Tsuboi Z.: Analytic Bethe ansatz and functional relations related to tensor-like representations of type-II Lie superalgebras B(r|s) and D(r|s). J. Phys. A Math. Gen. 32, 7175–7206 (1999)ADSCrossRefMATHGoogle Scholar
  46. 46.
    Tsuboi Z.: Asymptotic representations and q-oscillator solutions of the graded Yang–Baxter equation related to Baxter Q-operators. Nucl. Phys. B 886, 1–30 (2014)ADSCrossRefMATHGoogle Scholar
  47. 47.
    Xu, Y., Zhang, R.: Drinfeld realizations of quantum affine superalgebras. Preprint arXiv:1611.06449
  48. 48.
    Yamane H.: On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras. Publ. RIMS Kyoto Univ. 35, 321–390 (1999)CrossRefMATHGoogle Scholar
  49. 49.
    Zhang H.: Representations of quantum affine superalgebras. Math. Z. 278, 663–703 (2014)CrossRefMATHGoogle Scholar
  50. 50.
    Zhang H.: Universal R-matrix of quantum affine \({\mathfrak{gl}(1,1)}\). Lett. Math. Phys. 105(11), 1587–1603 (2015)ADSCrossRefMATHGoogle Scholar
  51. 51.
    Zhang H.: RTT realization of quantum affine superalgebras and tensor products. Int. Math. Res. Not. 2016, 1126–1157 (2016)CrossRefMATHGoogle Scholar
  52. 52.
    Zhang H.: Fundamental representations of quantum affine superalgebras and R-matrices. Transform. Groups 22, 559–590 (2017)CrossRefMATHGoogle Scholar
  53. 53.
    Zhang H.: Asymptotic representations of quantum affine superalgebras. SIGMA 13, 066 (2017)MATHGoogle Scholar
  54. 54.
    Zhang, H.: Elliptic quantum groups and Baxter relations. Preprint arXiv:1706.07574
  55. 55.
    Zhang R.: Symmetrizable quantum affine superalgebras and their representations. J. Math. Phys. 38(1), 535–543 (1997)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratoire Paul PainlevéVilleneuve d’AscqFrance

Personalised recommendations