Communications in Mathematical Physics

, Volume 359, Issue 3, pp 975–1026 | Cite as

Complete Bose–Einstein Condensation in the Gross–Pitaevskii Regime

  • Chiara Boccato
  • Christian Brennecke
  • Serena Cenatiempo
  • Benjamin Schlein
Article
  • 50 Downloads

Abstract

We consider a gas of N bosons in a box with volume one interacting through a two-body potential with scattering length of order \({N^{-1}}\) (Gross–Pitaevskii limit). Assuming the (unscaled) potential to be sufficiently weak, we prove complete Bose–Einstein condensation for the ground state and for many-body states with finite excitation energy in the limit of large N with a uniform (N-independent) bound on the number of excitations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Benedikter N., Oliveira G., Schlein B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk. USSR 11 (1947), 77. Engl. Transl. J. Phys. (USSR) 11, 23 (1947)Google Scholar
  3. 3.
    Brennecke, C., Schlein, B.: Gross–Pitaevskii dynamics for Bose–Einstein condensates. Preprint arXiv:1702.05625
  4. 4.
    Chen X., Holmer J.: Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy. Int. Math. Res. Not. 10, 3051–3110 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dereziński J., Napiórkowski M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15, 2409–2439 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Erdős L., Michelangeli A., Schlein B.: Dynamical formation of correlations in a Bose–Einstein condensate. Commun. Math. Phys. 289(3), 1171–1210 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Inv. Math. 167, 515–614 (2006)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98((4), 040404 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22, 1099–1156 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grech P., Seiringer R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322((2), 559–591 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lewin M., Nam P.T., Serfaty S., Solovej J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Lieb E.H., Seiringer R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A. 61, 043602 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Nam P.T., Rougerie N., Seiringer R.: Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited. Anal. PDE 9(2), 459–485 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pickl P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27, 1550003 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pizzo, A.: Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime. Preprint arXiv:1511.07026
  21. 21.
    Seiringer R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of ZurichZurichSwitzerland
  2. 2.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations