Abstract
We consider a gas of N bosons in a box with volume one interacting through a two-body potential with scattering length of order \({N^{-1}}\) (Gross–Pitaevskii limit). Assuming the (unscaled) potential to be sufficiently weak, we prove complete Bose–Einstein condensation for the ground state and for many-body states with finite excitation energy in the limit of large N with a uniform (N-independent) bound on the number of excitations.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
de Benedikter N., Oliveira G., Schlein B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2014)
Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk. USSR 11 (1947), 77. Engl. Transl. J. Phys. (USSR) 11, 23 (1947)
Brennecke, C., Schlein, B.: Gross–Pitaevskii dynamics for Bose–Einstein condensates. Preprint arXiv:1702.05625
Chen X., Holmer J.: Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy. Int. Math. Res. Not. 10, 3051–3110 (2016)
Dereziński J., Napiórkowski M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15, 2409–2439 (2014)
Erdős L., Michelangeli A., Schlein B.: Dynamical formation of correlations in a Bose–Einstein condensate. Commun. Math. Phys. 289(3), 1171–1210 (2009)
Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)
Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Inv. Math. 167, 515–614 (2006)
Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)
Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98((4), 040404 (2007)
Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22, 1099–1156 (2009)
Grech P., Seiringer R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322((2), 559–591 (2013)
Lewin M., Nam P.T., Serfaty S., Solovej J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2015)
Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)
Lieb E.H., Seiringer R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)
Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A. 61, 043602 (2000)
Lieb E.H., Yngvason J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)
Nam P.T., Rougerie N., Seiringer R.: Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited. Anal. PDE 9(2), 459–485 (2016)
Pickl P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27, 1550003 (2015)
Pizzo, A.: Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime. Preprint arXiv:1511.07026
Seiringer R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by R. Seiringer
Rights and permissions
About this article
Cite this article
Boccato, C., Brennecke, C., Cenatiempo, S. et al. Complete Bose–Einstein Condensation in the Gross–Pitaevskii Regime. Commun. Math. Phys. 359, 975–1026 (2018). https://doi.org/10.1007/s00220-017-3016-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-3016-5