Akbulut, S.: 4-Manifolds. Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford (2016). ISBN: 9780191827136
Baez J.C.: An introduction to spin foam models of quantum gravity and BF theory. Lect. Notes Phys. 543, 25–94 (2000). https://doi.org/10.1007/3-540-46552-9_2. arXiv:gr-qc/9905087
[gr-qc]
ADS
Article
MATH
Google Scholar
Baez J.C., Wise D.K.: Teleparallel gravity as a higher Gauge theory. Commun. Math. Phys. 333(1), 153–186 (2015) arXiv:1204.4339
[gr-qc]
ADS
MathSciNet
Article
MATH
Google Scholar
Barrett J.W., Faria Martins J., García-Islas J.M.: Observables in the Turaev-Viro and Crane-Yetter models. J. Math. Phys. 48(9), 093508 (2007). https://doi.org/10.1063/1.2759440. arXiv:math/0411281
ADS
MathSciNet
Article
MATH
Google Scholar
Barrett, J.W., Meusburger, C., Schaumann, G.: Gray categories with duals and their diagrams. In: ArXiv e-prints (2012). arXiv:1211.0529 [math.QA]
Barrett J.W.: Quantum gravity as topological quantum field theory. J. Math. Phys. 36, 6161–6179 (1995). https://doi.org/10.1063/1.531239. arXiv:gr-qc/9506070
[gr-qc]
ADS
MathSciNet
Article
MATH
Google Scholar
Barrett J.W., Crane L.: Relativistic spin networks and quantum gravity. J. Math. Phys. 39(6), 3296–3302 (1998)
ADS
MathSciNet
Article
MATH
Google Scholar
Barrett J.: Geometrical measurements in three-dimensional quantum gravity. Int. J. Mod. Phys. A 18, 97–113
(2003) arXiv:gr-qc/0203018
[gr-qc]
ADS
MathSciNet
Article
MATH
Google Scholar
Broda, B.: Surgical invariants of four manifolds. In: Quantum Topology: Proceedings, pp. 45–50 (1993). arXiv:hep-th/9302092
[hep-th]
Bruguiéres, A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3 (French). In: Mathematische Annalen 316.2, pp. 215-236 (2000).
https://doi.org/10.1007/s002080050011
. ISSN: 0025-5831
Cheng E., Gurski N.: The periodic table of n-categories for low dimensions II: degenerate tricategories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 52, 82–125 (2011) arXiv:0706.2307
[math.CT]
MathSciNet
MATH
Google Scholar
Crane, L., Kauffman, L.H., Yetter, D.N.: On the classicality of Broda’s SU(2) invariants of four manifolds. In: ArXiv e-prints (1993).
Crane L., Yetter D.N., Kauffman L.: State-sum invariants of 4-manifolds. J. Knot Theory Ramif. 6(2), 177–234 (1997) arXiv:hep-th/9409167
[hep-th]
MathSciNet
Article
MATH
Google Scholar
von Keyserlingk C.W., Burnell F.J., Simon S.H.: Three-dimensional topological lattice models with surface anyons. Phys. Rev. B 87(4), 045107 (2013). https://doi.org/10.1103/PhysRevB.87.045107. arXiv:1208.5128
[cond-mat. str-el]
ADS
Article
Google Scholar
Davydov, A.A.: Quasitriangular structures on cocommutative Hopf algebras. In: ArXiv e-prints (1997). arXiv:q-alg/9706007
[q-alg]
Deligne P.: Catégories tensorielles. Mosc. Math. J. 2, 227–248 (2002)
MathSciNet
MATH
Google Scholar
Drinfeld, V. et al.: (2010) On braided fusion categories I (English). Sel. Math. 16.1:1-119. https://doi.org/10.1007/s00029-010-0017-z. ISSN: 1022-1824, arXiv:0906.0620
[math.QA]
Engle J. et al.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136–149 (2008). https://doi.org/10.1016/j.nuclphysb.2008.02.018. arXiv:0711.0146
[gr-qc]
ADS
MathSciNet
Article
MATH
Google Scholar
Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories (English). Ann. Math. Second Ser. 162.2:581−642 (2005). https://doi.org/10.4007/annals.2005.162.581. ISSN: 0003-486X, 1939-8980/e.
Freedman M.H. et al.: Universal manifold pairings and positivity. Geom. Topol. 9(4), 2303–2317 (2005) arXiv:math/0503054
MathSciNet
Article
MATH
Google Scholar
Gompf, R.E., Stipsicz, A.: 4-Manifolds and Kirby Calculus. Graduate Studies in Mathematics. American Mathematical Society (1999). ISBN: 9780821809945
Henriques A., Penneys D., Tener J.: Categorified trace for module tensor categories over braided tensor categories. Doc. Math. 21, 1089–1149 (2016) arXiv:1509.02937
[math.QA]
MathSciNet
MATH
Google Scholar
Kirby, R.C.: The Topology of 4-Manifolds. Lecture Notes in Mathematics, vol. 1374, pp. vi+108. Springer, Berlin (1989). ISBN: 3-540-51148-2
Kirillov Jr., A.: String-net model of Turaev-Viro invariants. In: ArXiv e-prints (2011). arXiv:1106.6033
[math.AT]
Lickorish W.: The skein method for three-manifold invariants. J. Knot Theory Ramif. 2(2), 171–194 (1993). https://doi.org/10.1142/S0218216593000118
MathSciNet
Article
MATH
Google Scholar
Mac Lane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49.4:28-46 (1963). ISSN: 0035-4996
Mackaay M.: Finite groups, spherical 2-categories, and 4-manifold invariants. Adv. Math. 153(2), 353–390 (2000) arXiv:math/9903003
MathSciNet
Article
MATH
Google Scholar
Majid S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (2000)
MATH
Google Scholar
Müger, M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150.2:151−201 (2000). http://dx.doi.org/10.1006/aima.1999.1860. ISSN: 0001-8708, arXiv:math/9812040, http://www.sciencedirect.com/science/article/pii/S0001870899918601
Müger, M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra
180.1-2:81−157 (2003). https://doi.org/10.1016/S0022-4049(02)00247-5. ISSN: 0022-4049
Müger, M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87.2:291-308 (2003). https://doi.org/10.1112/S0024611503014187. http://plms.oxfordjournals.org/content/87/2/291.full.pdf+html
Petit J.: The dichromatic invariants of smooth 4-manifolds. Glob. J. Pure Appl. Math. 4(3), 1–16 (2008)
ADS
Google Scholar
Pfeiffer, H.: Finitely semisimple spherical categories and modular categories are selfdual. Adv. Math. 221.5:1608-1652 (2009). https://doi.org/10.1016/j.aim.2009.03.002. ISSN: 0001-8708
Roberts, J.: Skein theory and Turaev-Viro invariants. Topology 34.4:771-787 (1995). https://doi.org/10.1016/0040-9383(94)00053-0. ISSN: 0040-9383
Roberts, J.: Refined state-sum invariants of 3- and 4-manifolds. In: Geometric Topology (Athens, GA, 1993), Vol. 2. AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI, pp. 217-234 (1997)
de Sá, E.C.: A link calculus for 4-manifolds. In: Topology of Low-Dimensional Manifolds, Proceedings of the Second Sussex Conference, Lecture Notes in Mathematics, vol. 722, pp. 16–30 (1979)
Schommer-Pries, C.: The classification of two-dimensional extended topological field theories. In: ArXiv e-prints (2011). arXiv:1112.1000
[math.AT]
Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, pp. 289-355. Springer (2010). arXiv:0908.3347
[math.CT]
Shum, M.C.: Tortile tensor categories. J. Pure Appl. Algebra 93.1:57-110 (1994). https://doi.org/10.1016/0022-4049(92)00039-T. ISSN: 0022-4049, http://www.sciencedirect.com/science/article/pii/002240499200039T
Sokolov, M.V.: Which lens spaces are distinguished by Turaev-Viro invariants. Math. Notes 61.3:384−387 (1997). https://doi.org/10.1007/BF02355426.. ISSN: 1573–8876.
Turaev V.G., Viro O.Y.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31(4), 865–902 (1992)
MathSciNet
Article
MATH
Google Scholar
Walker K., Wang Z.: (3+1)-TQFTs and topological insulators. Front. Phys. 7, 150–159 (2012) arXiv:1104.2632
[cond-mat.str-el]
Article
Google Scholar
Wise D.: MacDowell–Mansouri gravity and cartan geometry. Class. Quantum Gravity 27, 155010 (2010). https://doi.org/10.1088/0264-9381/27/15/155010. arXiv:gr-qc/0611154
[gr-qc]
ADS
MathSciNet
Article
MATH
Google Scholar
Witten, E.: Topology-changing amplitudes in 2 + 1 dimensional gravity. Nucl. Phys. B 323.1:113-140 (1989). https://doi.org/10.1016/0550-3213(89)90591-9. ISSN: 0550-3213
Yetter D.N.: Topological quantum field theories associated to finite groups and crossed G-sets. J. Knot Theory Ramif. 1, 1–20 (1992). https://doi.org/10.1142/S0218216592000021
MathSciNet
Article
MATH
Google Scholar