Advertisement

Communications in Mathematical Physics

, Volume 356, Issue 3, pp 673–753 | Cite as

The Dynamic \({\Phi^4_3}\) Model Comes Down from Infinity

  • Jean-Christophe Mourrat
  • Hendrik WeberEmail author
Open Access
Article

Abstract

We prove an a priori bound for the dynamic \({\Phi^4_3}\) model on the torus which is independent of the initial condition. In particular, this bound rules out the possibility of finite time blow-up of the solution. It also gives a uniform control over solutions at large times, and thus allows one to construct invariant measures via the Krylov–Bogoliubov method. It thereby provides a new dynamic construction of the Euclidean \({\Phi^4_3}\) field theory on finite volume. Our method is based on the local-in-time solution theory developed recently by Gubinelli, Imkeller, Perkowski and Catellier, Chouk. The argument relies entirely on deterministic PDE arguments (such as embeddings of Besov spaces and interpolation), which are combined to derive energy inequalities.

Notes

Acknowledgement

JCM is partially supported by the ANR Grant LSD (ANR-15-CE40-0020-03). HW acknowledges support by an EPSRC First Grant, a Royal Society University Research Fellowship and the Mathematical Sciences Research Institute where part of this work was completed.

References

  1. 1.
    Bahouri H., Chemin J.-Y., Danchin R.: Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bourgain J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176(2), 421–445 (1996)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Brydges D.C., Fröhlich J., Sokal A.D.: A new proof of the existence and nontriviality of the continuum \({\varphi ^{4}_{2}}\) and \({\varphi ^{4}_{3}}\) quantum field theories. Commun. Math. Phys. 91(2), 141–186 (1983)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation (2013, preprint). arXiv:1310.6869
  6. 6.
    Chandra, A., Weber, H.: Stochastic PDEs, regularity structures, and interacting particle systems (2015, preprint). arXiv:1508.03616
  7. 7.
    Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Eckmann J.-P., Osterwalder K.: On the uniqueness of the Hamiltionian and of the representation of the CCR for the quartic boson interaction in three dimensions. Helv. Phys. Acta 44, 884–909 (1971)MathSciNetGoogle Scholar
  9. 9.
    Feldman J.: The \({\lambda \varphi ^{4}_{3}}\) field theory in a finite volume. Commun. Math. Phys. 37, 93–120 (1974)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Feldman J.S., Osterwalder K.: The Wightman axioms and the mass gap for weakly coupled \({(\Phi ^{4})_{3}}\) quantum field theories. Ann. Phys. 97(1), 80–135 (1976)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Funaki T., Quastel J.: KPZ equation, its renormalization and invariant measures. Stoch. Partial Differ. Equ. Anal. Comput. 3(2), 159–220 (2015)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Giacomin, G., Lebowitz, J.L., Presutti, E.: Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. In: Stochastic Partial Differential Equations: Six Perspectives. Mathematical Surveys and Monographs, vol. 64, pp. 107–152. American Mathematical Society, Providence, RI (1999)Google Scholar
  13. 13.
    Glimm J.: Boson fields with the \({:\Phi ^{4}:}\) interaction in three dimensions. Commun. Math. Phys. 10, 1–47 (1968)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Glimm J., Jaffe A.: Positivity of the \({\phi ^{4}_{3}}\) Hamiltonian. Fortschr. Physik 21, 327–376 (1973)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Glimm J., Jaffe A.: Quantum physics second edition. Springer-Verlag, New York (1987)CrossRefGoogle Scholar
  16. 16.
    Glimm J., Jaffe A., Spencer T.: Phase transitions for \({\varphi_{2}^{4}}\) quantum fields. Commum. Math. Phys. 45(3), 203–216 (1975)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6, 75 (2015)Google Scholar
  19. 19.
    Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique (2015, preprint). arXiv:1508.07764
  20. 20.
    Gubinelli M., Perkowski N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Guerra, F., Rosen, L., Simon, B.: The P \({(\phi)_{2}}\) Euclidean quantum field theory as classical statistical mechanics. I, II. Ann. Math. (2) 101, 111–189; ibid. 101, 191–259 (1975)Google Scholar
  22. 22.
    Hairer M.: Solving the KPZ equation. Ann. Math. (2) 178, 559–664 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Hairer M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Hairer, M.: Regularity structures and the dynamical \({\Phi^4_3}\) model (2015, preprint). arXiv:1508.05261
  25. 25.
    Hairer, M., Matetski, K.: Discretisations of rough stochastic PDEs (2015, preprint). arXiv:1511.06937
  26. 26.
    Hairer, M., Mattingly, J.: The strong Feller property for singular stochastic PDEs (2016, preprint). arXiv:1610.03415
  27. 27.
    Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015, preprint). arXiv:1512.07845
  28. 28.
    Hairer, M., Schoenbauer, P.: The strong support theorem for singular stochastic PDEs (in preparation)Google Scholar
  29. 29.
    Hairer, M., Shen, H.: A central limit theorem for the KPZ equation (2015, preprint). arXiv:1507.01237
  30. 30.
    Kupiainen A.: Renormalization group and stochastic PDEs. Ann. Henri Poincaré 17(3), 497–535 (2016)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Mourrat J.-C., Weber H.: Convergence of the two-dimensional dynamic Ising–Kac model to \({\Phi^4_2}\). Commun. Pure Appl. Math. 70(4), 717–812 (2016)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Mourrat J.-C., Weber H.: Global well-posedness of the dynamic \({\Phi^4}\) model in the plane. Ann. Probab. 45(4), 2398–2476 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Mourrat, J.-C., Weber, H., Xu, W.: Construction of \({\Phi^{4}_3}\) diagrams for pedestrians (2016, preprint). arXiv:1610.08897
  34. 34.
    Parisi G., Wu Y.S.: Perturbation theory without gauge fixing. Sci. Sin. 24(4), 483–496 (1981)MathSciNetGoogle Scholar
  35. 35.
    Prömel D.J., Trabs M.: Rough differential equations driven by signals in Besov spaces. J. Differ. Equ. 260(6), 5202–5249 (2016)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Tsatsoulis, P., Weber, H.: Spectral gap for the stochastic quantization equation on the 2-dimensional torus (2016, preprint). arXiv:1609.08447
  37. 37.
    Zhu, R., Zhu, X.: Lattice approximation to the dynamical \({\Phi_3^4}\) model (2015, preprint). arXiv:1508.05613

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Ecole normale supérieure de Lyon, CNRSLyonFrance
  2. 2.University of WarwickCoventryUK

Personalised recommendations