Abstract
We prove an a priori bound for the dynamic \({\Phi^4_3}\) model on the torus which is independent of the initial condition. In particular, this bound rules out the possibility of finite time blow-up of the solution. It also gives a uniform control over solutions at large times, and thus allows one to construct invariant measures via the Krylov–Bogoliubov method. It thereby provides a new dynamic construction of the Euclidean \({\Phi^4_3}\) field theory on finite volume. Our method is based on the local-in-time solution theory developed recently by Gubinelli, Imkeller, Perkowski and Catellier, Chouk. The argument relies entirely on deterministic PDE arguments (such as embeddings of Besov spaces and interpolation), which are combined to derive energy inequalities.
Article PDF
References
Bahouri H., Chemin J.-Y., Danchin R.: Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg (2011)
Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)
Bourgain J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176(2), 421–445 (1996)
Brydges D.C., Fröhlich J., Sokal A.D.: A new proof of the existence and nontriviality of the continuum \({\varphi ^{4}_{2}}\) and \({\varphi ^{4}_{3}}\) quantum field theories. Commun. Math. Phys. 91(2), 141–186 (1983)
Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation (2013, preprint). arXiv:1310.6869
Chandra, A., Weber, H.: Stochastic PDEs, regularity structures, and interacting particle systems (2015, preprint). arXiv:1508.03616
Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)
Eckmann J.-P., Osterwalder K.: On the uniqueness of the Hamiltionian and of the representation of the CCR for the quartic boson interaction in three dimensions. Helv. Phys. Acta 44, 884–909 (1971)
Feldman J.: The \({\lambda \varphi ^{4}_{3}}\) field theory in a finite volume. Commun. Math. Phys. 37, 93–120 (1974)
Feldman J.S., Osterwalder K.: The Wightman axioms and the mass gap for weakly coupled \({(\Phi ^{4})_{3}}\) quantum field theories. Ann. Phys. 97(1), 80–135 (1976)
Funaki T., Quastel J.: KPZ equation, its renormalization and invariant measures. Stoch. Partial Differ. Equ. Anal. Comput. 3(2), 159–220 (2015)
Giacomin, G., Lebowitz, J.L., Presutti, E.: Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. In: Stochastic Partial Differential Equations: Six Perspectives. Mathematical Surveys and Monographs, vol. 64, pp. 107–152. American Mathematical Society, Providence, RI (1999)
Glimm J.: Boson fields with the \({:\Phi ^{4}:}\) interaction in three dimensions. Commun. Math. Phys. 10, 1–47 (1968)
Glimm J., Jaffe A.: Positivity of the \({\phi ^{4}_{3}}\) Hamiltonian. Fortschr. Physik 21, 327–376 (1973)
Glimm J., Jaffe A.: Quantum physics second edition. Springer-Verlag, New York (1987)
Glimm J., Jaffe A., Spencer T.: Phase transitions for \({\varphi_{2}^{4}}\) quantum fields. Commum. Math. Phys. 45(3), 203–216 (1975)
Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)
Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6, 75 (2015)
Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique (2015, preprint). arXiv:1508.07764
Gubinelli M., Perkowski N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)
Guerra, F., Rosen, L., Simon, B.: The P \({(\phi)_{2}}\) Euclidean quantum field theory as classical statistical mechanics. I, II. Ann. Math. (2) 101, 111–189; ibid. 101, 191–259 (1975)
Hairer M.: Solving the KPZ equation. Ann. Math. (2) 178, 559–664 (2013)
Hairer M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)
Hairer, M.: Regularity structures and the dynamical \({\Phi^4_3}\) model (2015, preprint). arXiv:1508.05261
Hairer, M., Matetski, K.: Discretisations of rough stochastic PDEs (2015, preprint). arXiv:1511.06937
Hairer, M., Mattingly, J.: The strong Feller property for singular stochastic PDEs (2016, preprint). arXiv:1610.03415
Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015, preprint). arXiv:1512.07845
Hairer, M., Schoenbauer, P.: The strong support theorem for singular stochastic PDEs (in preparation)
Hairer, M., Shen, H.: A central limit theorem for the KPZ equation (2015, preprint). arXiv:1507.01237
Kupiainen A.: Renormalization group and stochastic PDEs. Ann. Henri Poincaré 17(3), 497–535 (2016)
Mourrat J.-C., Weber H.: Convergence of the two-dimensional dynamic Ising–Kac model to \({\Phi^4_2}\). Commun. Pure Appl. Math. 70(4), 717–812 (2016)
Mourrat J.-C., Weber H.: Global well-posedness of the dynamic \({\Phi^4}\) model in the plane. Ann. Probab. 45(4), 2398–2476 (2017)
Mourrat, J.-C., Weber, H., Xu, W.: Construction of \({\Phi^{4}_3}\) diagrams for pedestrians (2016, preprint). arXiv:1610.08897
Parisi G., Wu Y.S.: Perturbation theory without gauge fixing. Sci. Sin. 24(4), 483–496 (1981)
Prömel D.J., Trabs M.: Rough differential equations driven by signals in Besov spaces. J. Differ. Equ. 260(6), 5202–5249 (2016)
Tsatsoulis, P., Weber, H.: Spectral gap for the stochastic quantization equation on the 2-dimensional torus (2016, preprint). arXiv:1609.08447
Zhu, R., Zhu, X.: Lattice approximation to the dynamical \({\Phi_3^4}\) model (2015, preprint). arXiv:1508.05613
Acknowledgement
JCM is partially supported by the ANR Grant LSD (ANR-15-CE40-0020-03). HW acknowledges support by an EPSRC First Grant, a Royal Society University Research Fellowship and the Mathematical Sciences Research Institute where part of this work was completed.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Hairer
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Mourrat, JC., Weber, H. The Dynamic \({\Phi^4_3}\) Model Comes Down from Infinity. Commun. Math. Phys. 356, 673–753 (2017). https://doi.org/10.1007/s00220-017-2997-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2997-4