Quantum Field Theories on Categories Fibered in Groupoids

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We introduce an abstract concept of quantum field theory on categories fibered in groupoids over the category of spacetimes. This provides us with a general and flexible framework to study quantum field theories defined on spacetimes with extra geometric structures such as bundles, connections and spin structures. Using right Kan extensions, we can assign to any such theory an ordinary quantum field theory defined on the category of spacetimes and we shall clarify under which conditions it satisfies the axioms of locally covariant quantum field theory. The same constructions can be performed in a homotopy theoretic framework by using homotopy right Kan extensions, which allows us to obtain first toy-models of homotopical quantum field theories resembling some aspects of gauge theories.

References

  1. BG11

    Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. In: Bär, C., Lohkamp, J., Schwarz, M. (eds.) Global Differential Geometry. Springer Proceedings in Mathematics, vol. 17 (2011). [arXiv:1104.1158 [math-ph]]

  2. BGP07

    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zürich (2007). [arXiv:0806.1036 [math.DG]]

  3. BBSS17

    Becker C., Benini M., Schenkel A., Szabo R.J.: Abelian duality on globally hyperbolic spacetimes. Commun. Math. Phys. 349(1), 361 (2017) [arXiv:1511.00316 [hep-th]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. BSS16

    Becker C., Schenkel A., Szabo R.J.: Differential cohomology and locally covariant quantum field theory. Rev. Math. Phys. 29(01), 1750003 (2016) [arXiv:1406.1514 [hep-th]]

    MathSciNet  Article  MATH  Google Scholar 

  5. Ben15

    Benini, M.: Locality in Abelian gauge theories over globally hyperbolic spacetimes. Dissertation for Ph.D., University of Pavia (2015). [arXiv:1503.00131 [math-ph]]

  6. BDHS14

    Benini M., Dappiaggi C., Hack T.P., Schenkel A.: A C *-algebra for quantized principal U(1)-connections on globally hyperbolic Lorentzian manifolds. Commun. Math. Phys. 332, 477 (2014) [arXiv:1307.3052 [math-ph]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. BDS14

    Benini M., Dappiaggi C., Schenkel A.: Quantized Abelian principal connections on Lorentzian manifolds. Commun. Math. Phys. 330, 123 (2014) [arXiv:1303.2515 [math-ph]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. BDS14

    Benini M., Schenkel A., Szabo R.J.: Homotopy colimits and global observables in Abelian gauge theory. Lett. Math. Phys. 105(9), 1193 (2015) [arXiv:1503.08839 [math-ph]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. BM07

    Berger C., Moerdijk I.: Resolution of coloured operads and rectification of homotopy algebras. Contemp. Math. 431, 31–58 (2007) [arXiv:math/0512576 [math.AT]]

    MathSciNet  Article  MATH  Google Scholar 

  10. BFV03

    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237(1-2), 31 (2003) [arXiv:math-ph/0112041]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. BR07

    Brunetti R., Ruzzi G.: Superselection sectors and general covariance. I. Commun. Math. Phys. 237(1-2), 31 (2007) [arXiv:gr-qc/0511118 [gr-qc]]

    ADS  MathSciNet  MATH  Google Scholar 

  12. BCRV16

    Buchholz, D., Ciolli, F., Ruzzi, G., Vasselli, E.: The universal C *-algebra of the electromagnetic field. Lett. Math. Phys. 106(2), 269 (2016); Erratum: [Lett. Math. Phys. 106(2), 287 (2016)] [arXiv:1506.06603 [math-ph]]

  13. BCRV17

    Buchholz D., Ciolli F., Ruzzi G., Vasselli E.: The universal C *-algebra of the electromagnetic field II. Topological charges and spacelike linear fields. Lett. Math. Phys. 107(2), 201 (2017) [arXiv:1610.03302 [math-ph]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. C-B87

    Choquet-Bruhat Y.: Global existence theorems for hyperbolic harmonic maps. Ann. Inst. H. Poincaré Phys. Théor. 46(1), 97–111 (1987)

    MathSciNet  MATH  Google Scholar 

  15. C-B91

    Choquet-Bruhat Y.: Yang–Mills–Higgs fields in three space time dimensions. Mém. Soc. Math. Fr. 46, 73–97 (1991)

    MathSciNet  MATH  Google Scholar 

  16. CS97

    Chrusciel P.T., Shatah J.: Global existence of solutions of the Yang–Mills equations on globally hyperbolic four dimensional Lorentzian manifolds. Asian J. Math. 1, 530 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  17. Cis03

    Cisinski D.-C.: Images directes cohomologiques dans les catégories de modèles. Ann. Math. Blaise Pascal 10(2), 195–244 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  18. Cis09

    Cisinski D.-C.: Locally constant functors. Math. Proc. Camb. Philos. Soc. 147(3), 593–614 (2009) [arXiv:0803.4342 [math.AT]]

    MathSciNet  Article  MATH  Google Scholar 

  19. CG16

    Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, New Mathematical Monographs, vol. 31, Cambridge University Press (2016). Book draft available at http://people.mpim-bonn.mpg.de/gwilliam/vol1may8.pdf

  20. Cra03

    Crainic, M.: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes. Comment. Math. Helv. 78(4), 681–721 (2003)

  21. DHP09

    Dappiaggi C., Hack T.-P., Pinamonti N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21(10), 1241 (2009) [arXiv:0904.0612 [math-ph]]

    MathSciNet  Article  MATH  Google Scholar 

  22. DL12

    Dappiaggi C., Lang B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012) [arXiv:1104.1374 [gr-qc]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. DHR69a

    Doplicher S., Haag R., Roberts J.E.: Fields, observables and gauge transformations I. Commun. Math. Phys. 13, 1 (1969)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. DHR69b

    Doplicher S., Haag R., Roberts J.E.: Fields, observables and gauge transformations. 2. Commun. Math. Phys. 15, 173 (1969)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. Dug

    Dugger, D.: A primer on homotopy colimits. http://pages.uoregon.edu/ddugger/hocolim.pdf

  26. DS95

    Dwyer, W.G., Spalinski, J.: Homotopy theories and model categories. In: James, I.M. (ed.) Handbook of algebraic topology, pp. 73–126. North-Holland, Amsterdam (1995)

  27. Few13

    Fewster C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013) [arXiv:1201.3295 [math-ph]]

    MathSciNet  Article  MATH  Google Scholar 

  28. Few16a

    Fewster, C.J.: On the spin-statistics connection in curved spacetimes. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds.) Quantum Mathematical Physics: A Bridge Between Mathematics and Physics. Birkhäuser, Basel (2016). [arXiv:1503.05797 [math-ph]]

  29. Few16a

    Fewster C.J.: Locally covariant quantum field theory and the spin-statistics connection. Int. J. Mod. Phys. D 25(06), 1630015 (2016) [arXiv:1603.01036 [gr-qc]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. FS15

    Fewster C.J., Schenkel A.: Locally covariant quantum field theory with external sources. Ann. Henri Poincaré 16(10), 2303 (2015) [arXiv:1402.2436 [math-ph]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. FS15

    Fewster C.J., Verch R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes?. Ann. Henri Poincaré 13, 1613 (2012) [arXiv:1106.4785 [math-ph]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. Fre90

    Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: Kastler, D. (ed.) The Algebraic Theory of Superselection Sectors: Introduction and Recent Results, vol. 379. World Scientific Publishing, Singapore (1990)

  33. Fre93

    Fredenhagen, K.: Global observables in local quantum physics. In: Araki, H., Ito, K.R., Kishimoto, A., Ojima, I. (eds.) Quantum and Non-commutative Analysis: Past, Present and Future Perspectives, vol. 41. Kluwer Academic Publishers, Dordrecht (1993)

  34. FRS92

    Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras II: geometric aspects and conformal covariance. Rev. Math. Phys. 4, 113 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  35. GB78

    Greub, W., Petry, H.R.: On the lifting of structure groups. In: Bleuler, K., Petry, H.R., Reetz, A. (eds.) Differential Geometric Methods in Mathematical Physics II. Lecture Notes on Mathematics, vol. 676, Springer, Berlin (1978)

  36. Hat02

    Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  37. Hir03

    Hirschhorn, P.S.: Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI (2003)

  38. Hol08

    Hollander S.: A homotopy theory for stacks. Israel J. Math. 163, 93–124 (2008) [arXiv:math.AT/0110247]]

    MathSciNet  Article  MATH  Google Scholar 

  39. Jar97

    Jardine J.F.: A closed model structure for differential graded algebras. Fields Inst. Commun. 17, 55 (1997)

    MathSciNet  MATH  Google Scholar 

  40. MacL98

    Mac Lane S.: Categories for the Working Mathematician, Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  41. Rod14

    Rodríguez-González B.: Realizable homotopy colimits. Theory Appl. Categ. 29(22), 609–634 (2014) [arXiv:1104.0646 [math.AG]]

    MathSciNet  MATH  Google Scholar 

  42. Ruz05

    Ruzzi G.: Homotopy, net-cohomology and superselection sectors in globally hyperbolic spacetimes. Rev. Math. Phys. 17, 1021 (2014) [arXiv:math-ph/0412014]]

    Article  MATH  Google Scholar 

  43. San10

    Sanders K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381 (2010) [arXiv:0911.1304 [math-ph]]

    MathSciNet  Article  MATH  Google Scholar 

  44. SDH14

    Sanders K., Dappiaggi C., Hack T.P.: Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss’ law. Commun. Math. Phys. 328, 625 (2014) [arXiv:1211.6420 [math-ph]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. SZ16

    Schenkel, A., Zahn, J.: Global anomalies on Lorentzian space-times. Ann. Henri Poincaré 18(8), 2693 (2017). [arXiv:1609.06562 [hep-th]]

  46. Ver01

    Verch R.: A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261 (2001) [arXiv:math/0102035]]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. Vis05

    Vistoli, A.: Grothendieck topologies, fibered categories and descent theory. In: Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S.L., Nitsure, N., Vistoli, A. (eds.) Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, vol. 123, pp. 1–104, American Mathematical Society, Providence, RI (2005)

  48. Wal05

    Walter, B.: Rational homotopy calculus of functors. Dissertation for Ph.D., Brown University (2005). [arXiv:math/0603336 [math.AT]]

  49. Zah14

    Zahn J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26(1), 1330012 (2014) [arXiv:1210.4031 [math-ph]]

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Schenkel.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benini, M., Schenkel, A. Quantum Field Theories on Categories Fibered in Groupoids. Commun. Math. Phys. 356, 19–64 (2017). https://doi.org/10.1007/s00220-017-2986-7

Download citation