Abstract
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev’s quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
This is a preview of subscription content, access via your institution.
Change history
16 April 2018
There were two errors in the original publication. First, the term BK in Eq. (2.20) was not well-defined in the case of non-normal subgroups K.
References
Bakalov, B., Kirillov, A.A.: Lectures on tensor categories and modular functors vol. 21. American Mathematical Society, Providence (2001)
Bais F.A., Slingerland J.K.: Condensate induced transitions between topologically ordered phases. Phys. Rev. B 79, 045316 (2009)
Barkeshli M., Qi X.-L.: Topological nematic states and non-abelian lattice dislocations. Phys. Rev. X 2(3), 031013 (2012)
Barkeshli M., Bonderson P., Cheng M., Wang Z.: Symmetry, defects, and gauging of topological phases (2014). Arxiv preprint arXiv:1410.4540
Barkeshli M., Sau J.D.: Physical architecture for a universal topological quantum computer based on a network of Majorana nanowires (2015). Arxiv preprint arxiv:1509.07135
Barkeshli M., Jian C.-M., Qi X.-L.: Twist defects and projective non-abelian braiding statistics. Phys. Rev. B 87(4), 045130 (2013)
Barkeshli M., Jian C.-M., Qi X.-L.: Theory of defects in Abelian topological states. Phys. Rev. B 88(23), 235103 (2013)
Barkeshli M., Jian C.-M., Qi X.-L.: Classification of topological defects in abelian topological states. Phys. Rev. B 88(24), 241103 (2013)
Beigi S., Shor P.W., Whalen D.: The quantum double model with boundary: condensations and symmetries. Commun. Math. Phys. 306(3), 663–694 (2011)
Bombin H., Martin-Delgado M.A.: Family of non-abelian Kitaev models on a lattice: topological condensation and confinement. Phys. Rev. B 78, 115421 (2008)
Bombin H., Martin-Delgado M.A.: Nested topological order. New J. Phys. 13, 125001 (2011)
Bravyi, S.B., Kitaev, A.Y.: Quantum codes on a lattice with boundary (1998). arXiv:quant-ph/9811052
Chang, L.: Kitaev models based on unitary quantum groupoids. J. Math. Phys. 55(4), 041703, 20 (2014)
Chang L. et al.: On enriching the Levin-Wen model with symmetry. J. Phys. A Math. Theor. 48(12), 12FT01 (2015)
Cheng M.: Superconducting proximity effect on the edge of fractional topological insulators. Phys. Rev. B 86, 195126 (2012)
Clarke D.J., Alicea J., Shtengel K.: Exotic non-abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013)
Cong, I., Cheng, M., Wang, Z.: Topological quantum computation with gapped boundaries (2016). Arxiv preprint arXiv:1609.02037
Cong, I., Cheng, M., Wang, Z.: On defects between gapped boundaries in two-dimensional topological phases of matter (2017). Arxiv preprint arXiv:1703.03564
Cong, I., Cheng, M.,Wang, Z.: Universal quantum computation with gapped boundaries (In preparation)
Cui S.X., Hong S.-M., Wang Z.: Universal quantum computation with weakly integral anyons. Quantum Inf. Process. 14, 26872727 (2015)
Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. Journal für die reine und angewandte Mathematik 677, 177 (2012). doi:10.1515/crelle.2012.014
Davydov A.: Bogomolov multiplier, double class-preserving automorphisms and modular invariants for orbifolds. J. Math. Phys. 55, 092305 (2014) arXiv:1312.7466
Dennis E., Kitaev A.Y., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43, 4452 (2002)
Drinfeld V.: Quasi-Hopf algebras. Leningrad Math. J. 1, 1419–1457 (1989)
Eliëns I.S., Romers J.C., Bais F.A.: Diagrammatics for Bose condensation in anyon theories. Phys. Rev. B 90, 195130 (2014)
Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162(2), 581–642 (2005)
Fowler A.G., Mariantoni M., Martinis J.M., Cleland A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)
Freedman M.H.: P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. 95(1), 98–101 (1998)
Freedman M., Kitaev A., Larsen M., Wang Z.: Topological quantum computation. Bull. Am. Math. Soc. 40(1), 31–38 (2003)
Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Adv. Math. 199(1), 192–329 (2006)
Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators I: partition functions. Nucl. Phys. B 646(3), 353–497 (2002)
Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators IV: structure constants and correlation functions. Nucl. Phys. B 715(3), 539–638 (2005)
Fuchs J., Schweigert C., Valentino A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321(2), 543–575 (2013)
Fuchs J., Schweigert C., Valentino A.: A geometric approach to boundaries and surface defects in Dijkgraaf-Witten theories. Commun. Math. Phys. 332, 981 (2014)
Ganeshan S., Gorshkov A.V., Gurarie V., Galitski V.M.: Exactly soluble model of boundary degeneracy. Phys. Rev. B 95, 045309 (2017)
Gelaki S., Naidu D.: Some properties of group-theoretical categories. J. Algebra 322, 2631 (2007) arXiv:0709.4326
Hung L.Y., Wan Y.: Ground-state degeneracy of topological phases on open surfaces. Phys. Rev. Lett. 114(7), 076401 (2015)
Kapustin A., Saulina N.: Topological boundary conditions in abelian Chern-Simons theory. Nucl. Phys. B 845, 393 (2011)
Kapustin A.: Ground-state degeneracy for Abelian anyons in the presence of gapped boundaries. Phys. Rev. B 89, 125307 (2014)
Kapustin, A., Saulina, N.: Surface operators in 3d topological field theory and 2d rational conformal field theory. In: Mathematical Foundations of Quantum Field and Perturbative String Theory. AMS (2011). arXiv:1012.0911
Kirillov A., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of sl 2 conformal field theories. Adv. Math. 171(2), 183–227 (2002)
Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(2), 2–30 (2003)
Kitaev, A.: Bose-condensation and edges of topological quantum phases. Talk at modular categories and applications. Indiana University, 19–22 March 2009
Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313, 351–373 (2012) . doi:10.1007/s00220-012-1500-5
Kong, L.: Some universal properties of Levin-Wen models. XVIITH International Congress of Mathematical Physics, World Scientific (2014)
Kong L.: Anyon condensation and tensor categories. Nucl. Phys. B 886, 436 (2014)
Kong, L., Wen, X.-G., Hao, Z.: Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers (2015). arXiv:1502.01690
Lan T., Wang J.C., Wen X.-G.: Gapped domain walls, gapped boundaries, and topological degeneracy. Phys. Rev. Lett. 114(7), 076402 (2015)
Levin M.A., Wen X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)
Levin M.: Protected edge modes without symmetry. Phys. Rev. X 3, 021009 (2013)
Lindner N.H., Berg E., Refael G., Stern A.: Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012)
Mac Lane S.: Categories for the working mathematician, vol. 5. Springer Science and Business Media, Berlin (2013)
Moore C., Rockmore D., Russell A.: Generic quantum Fourier transforms. J. ACM Trans. Algorithms 2(4), 707–723 (2006). doi:10.1145/1198513.1198525
Müger M.: Galois extensions of braided tensor categories and braided crossed G-categories. J. Algebra 277, 256281 (2004)
Müger, M.: Modular categories. In: Heunen, C., Sadrzadeh, M., Grefenstette, E. (eds.) Quantum Physics and Linguistics, Chapter 6. Oxford University Press, Oxford (2013)
Naidu D., Rowell E.C.: A finiteness property for braided fusion categories. Algebras Represent. Theory 14, 837 (2011). doi:10.1007/s10468-010-9219-5
Nayak C. et al.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3), 1083 (2008)
Neupert T., He H., von Keyserlingk C., Sierra G., Bernevig B.A.: Boson condensation in topologically ordered quantum liquids. Phys. Rev. B 93, 115103 (2016)
Neupert T., He H., von Keyserlingk C., Sierra G., Bernevig B.A.: No-go theorem for boson condensation in topologically ordered quantum liquids. New J. Phys. 18, 123009 (2016)
Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 27, 1507–1520 (2003)
Ostrik V.: Module categories, weak Hopf algebras, and modular invariants. Transform. Groups 8(2), 177–206 (2003)
Petkova V.B., Zuber J.B.: The many faces of Ocneanu cells. Nucl. Phys. B 603(3), 449–496 (2001)
Raussendorf R., Browne D.E., Briegel H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)
Schauenburg, P.: Hopf algebra extensions and monoidal categories. New Directions in Hopf Algebras, vol. 43. MSRI Publications (2002)
Schauenburg P.: Hopf modules and the double of a quasi-Hopf algebra. Trans. Am. Math. Soc. 304(8), 3349–3378 (2002)
Schauenburg P.: Computing higher Frobenius-Schur indicators in fusion categories constructed from inclusions of finite groups. Pac. J. Math. 280(1), 177–201 (2015)
Varona J.: Rational values of the arccosine function. Open Math. 4(2), 319–322 (2006)
Wan Yidun, Wang Chenjie: Fermion condensation and gapped domain walls in topological orders. JHEP 1703, 172 (2017)
Wang, Z.: Topological Quantum Computation. No. 112. American Mathematical Soc., Providence (2010)
Wen X.-G.: Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40(10), 7387 (1989)
Wang J.C., Wen X.-G.: Boundary degeneracy of topological order. Phys. Rev. B. 91(12), 125124 (2015)
Zhu, Y.: Hecke Algebras and Representation Rings of Hopf Algebras. Studies in Advanced Mathematics, vol. 20. http://hdl.handle.net/1783.1/51261 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Rights and permissions
About this article
Cite this article
Cong, I., Cheng, M. & Wang, Z. Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter. Commun. Math. Phys. 355, 645–689 (2017). https://doi.org/10.1007/s00220-017-2960-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2960-4