Communications in Mathematical Physics

, Volume 357, Issue 1, pp 231–248 | Cite as

Asymptotic Observables in Gapped Quantum Spin Systems

Article
  • 32 Downloads

Abstract

This paper gives a construction of certain asymptotic observables (Araki–Haag detectors) in ground state representations of gapped quantum spin systems. The construction is based on general assumptions which are satisfied e.g. in the Ising model in strong transverse magnetic fields. We do not use the method of propagation estimates, but exploit instead the existence of the wave operators combined with the compactness of the relevant propagation observables at any fixed time. Implications for the problem of asymptotic completeness are briefly discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al73.
    Albeverio S.: Scattering theory in a model of quantum fields. I. J. Math. Phys. 14, 1800–1816 (1973)ADSMathSciNetCrossRefGoogle Scholar
  2. AH67.
    Araki H., Haag R.: Collision cross sections in terms of local observables. Commun. Math. Phys. 4, 77–91 (1967)ADSMathSciNetCrossRefGoogle Scholar
  3. AB01.
    Auil F., Barata J.C.A.: Scattering and bound states in Euclidean lattice quantum field theories. Ann. Henri Poincaré 2, 1065–1097 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. BDN16.
    Bachmann S., Dybalski W., Naaijkens P.: Lieb–Robinson bounds, Arveson spectrum and Haag–Ruelle scattering theory for gapped quantum spin systems. Ann. Henri Poincaré 17, 1737–1791 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. BF91.
    Barata J.C.A., Fredenhagen K.: Particle scattering in Euclidean lattice field theories. Commun. Math. Phys. 138, 507–519 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. Bos00.
    Bostelmann, H.: Lokale Algebren and Operatorprodukte am Punkt. Ph.D. Thesis, Universität Göttingen (2000)Google Scholar
  7. Bu90.
    Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–641 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. BPS91.
    Buchholz D., Porrmann M., Stein U.: Dirac versus Wigner: towards a universal particle concept in quantum field theory. Phys. Lett. B 267, 377–381 (1991)ADSMathSciNetCrossRefGoogle Scholar
  9. DG97.
    Dereziński J., Gérard C.: Scattering Theory of Classical and Quantum N-Particle Systems. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  10. DG12.
    Dybalski W., Gérard C.: Towards asymptotic completeness of two-particle scattering in local relativistic QFT. Commun. Math. Phys. 326, 81–109 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. DG13.
    Dybalski W., Gérard C.: A criterion for asymptotic completeness in local relativistic QFT. Commun. Math. Phys. 332, 1167–1202 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. GN98.
    Gérard C., Nier F.: Scattering theory for the perturbations of periodic Schrödinger operators. J. Math. Kyoto Univ. 38, 595–634 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. Gr90.
    Graf G.M.: Asymptotic completeness for N-body short-range quantum systems: a new proof. Commun. Math. Phys. 132, 73–101 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. Gr90.
    Graf G.M., Schenker D.: 2-Magnon scattering in the Heisenberg model. Ann. Inst. Henri Poincaré Phys. Théor. 67, 91–107 (1997)MathSciNetMATHGoogle Scholar
  15. Ha58.
    Haag R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. HS65.
    Haag R., Swieca J.A.: When does a quantum field theory describe particles?. Commun. Math. Phys. 1, 308–320 (1965)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. Ho85.
    Hörmander L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (1985)MATHGoogle Scholar
  18. NRT83.
    Narnhofer H., Requardt M., Thirring W.: Quasi-particles at finite temperatures. Commun. Math. Phys. 92, 247–268 (1983)ADSCrossRefMATHGoogle Scholar
  19. RS3.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. Part III: Scattering Theory. Academic Press, London (1979)MATHGoogle Scholar
  20. RS.
    Riesz F., Sz-Nagy B.: Leçons d’Analyse Fonctionnelle, 3rd edn. Gauthier-Villars, Paris (1955)MATHGoogle Scholar
  21. Ru62.
    Ruelle D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147–163 (1962)MathSciNetMATHGoogle Scholar
  22. Sch83.
    Schmitz, M.: Lokalitätseigenschaften von Einteilchenzuständen in Quanten-Spinzuständen. Masters thesis, University of Freiburg (1983)Google Scholar
  23. SiSo87.
    Sigal I.M., Soffer A.: The N-particle scattering problem: asymptotic completeness for short-range systems. Ann. Math. 126, 35–108 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenGarchingGermany

Personalised recommendations