Abstract
Random quantum processes play a central role both in the study of fundamental mixing processes in quantum mechanics related to equilibration, thermalisation and fast scrambling by black holes, as well as in quantum process design and quantum information theory. In this work, we present a framework describing the mixing properties of continuous-time unitary evolutions originating from local Hamiltonians having time-fluctuating terms, reflecting a Brownian motion on the unitary group. The induced stochastic time evolution is shown to converge to a unitary design. As a first main result, we present bounds to the mixing time. By developing tools in representation theory, we analytically derive an expression for a local k-th moment operator that is entirely independent of k, giving rise to approximate unitary k-designs and quantum tensor product expanders. As a second main result, we introduce tools for proving bounds on the rate of decoupling from an environment with random quantum processes. By tying the mathematical description closely with the more established one of random quantum circuits, we present a unified picture for analysing local random quantum and classes of Markovian dissipative processes, for which we also discuss applications.
Similar content being viewed by others
References
Brown W., Viola L.: Convergence rates for arbitrary statistical moments of random quantum circuits. Phys. Rev. Lett. 104, 250501 (2010)
Brown, W., Fawzi O.: Scrambling speed of random quantum circuits. arXiv:1210.6644 (2012)
Brandao F.G.S.L., Horodecki M.: Exponential quantum speed-ups are generic. Quantum Inf. Comput. 13, 0901 (2013)
Brown, W., Fawzi, O.: Decoupling with random quantum circuits. Commun. Math. Phys. 340, 867–900 (2015)
Oliveira R., Dahlsten O.C.O., Plenio M.B.: Efficient generation of generic entanglement. Phys. Rev. Lett. 98, 130502 (2007)
Brown, W., Fawzi, O.: Short random circuits define good quantum error correcting codes. In: Proceedings of the ISIT, pp. 346 (2013)
Brandao F.G.S.L., Cwiklinski P., Horodecki M., Horodecki P., Korbicz J., Mozrzymas M.: Convergence to equilibrium under a random Hamiltonian. Phys. Rev. E 86, 031101 (2012)
Hallgren, S., Harrow, A.W.: Superpolynomial speedups based on almost any quantum circuit. In: Proc. of the 35th Int. Coll. Aut. Lang. Prog. LNCS, vol. 5125, p. 782 (2008)
Lashkari N., Stanford D., Hastings M., Osborne T.J., Hayden P.: Towards the fast scrambling conjecture. JHEP 2013, 22 (2013)
Harrow A.W., Low R.A.: Random quantum circuits are approximate 2-designs. Commun. Math. Phys. 291, 257 (2009)
Bouten L., van Handel R.: Discrete approximation of quantum stochastic models. J. Math. Phys. 49, 102109 (2008)
Brandao F.G.S.L., Harrow A.W., Harrow A.W.: Local random quantum circuits are approximate polynomial-designs. Commun. Math. Phys. 346(2), 397–434 (2016)
Weinstein Y.S., Brown W.G., Viola L.: Parameters of pseudo-random quantum circuits. Phys. Rev. A 78, 052332 (2008)
Belton A.C.R., Gnacik M., Lindsay J.M.: The convergence of unitary quantum random walks. Lancaster EPrints (2014). http://eprints.lancs.ac.uk/69293/. Accessed on 18 July 2017
Gross D, Audenaert K.M.R., Eisert J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052104 (2007)
Levin D.A., Peres Y., Wilmer E.L.: Markov Chains and Mixing Times. American Mathematical Society, New York (2008)
Aldous D., Diaconis P.: Shuffling cards and stopping time. Am. Math. Soc. Mon. 93(5), 333–348 (1986)
Dunjko V., Briegel H.J.: Quantum mixing of Markov chains for special distributions. New. J. Phys. 17, 073004 (2015)
Kabanava M., Kueng R., Rauhut H., Terstiege U.: Stable low-rank matrix recovery via null space properties. Inf. Inference 5(4), 405–441 (2016)
Ohliger M., Nesme V., Eisert J.: Efficient and feasible state tomography of quantum many-body systems. New J. Phys. 15, 015024 (2013)
Knill E., Leibfried D., Reichle R., Britton J., Blakestad R.B., Jost J.D., Langer C., Ozeri R., Seidelin S., Wineland D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 12307 (2008)
Szehr O., Dupuis F., Tomamichel M., Renner R.: Decoupling with unitary approximate two-design. New J. Phys. 15, 053022 (2013)
Horodecki M., Oppenheim J., Winter A.: Quantum state merging and negative information. Commun. Math. Phys. 269, 107 (2007)
Bennett C.H., Devetak I., Harrow A.W., Shor P.W., Winter A.: Quantum reverse Shannon theorem. IEEE Trans. Inf. Theory 60(5), 2926–2959 (2014)
Buscemi F.: Private quantum decoupling and secure disposal of information. New J. Phys. 11, 123002 (2009)
Gogolin C., Eisert J.: Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 56001 (2016)
Banks T., Fischler W., Shenker S., Susskind L.: m theory as a matrix model: a conjecture. Phys. Rev. D 55, 5112 (1997)
Maldacena J.: The large n limit of super-conformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 213 (1998)
Sekino Y., Susskind L.: Fast scramblers. JHEP 10, 65 (2008)
Asplund C.T., Berenstein D., Trancanelli D.: Evidence for fast thermalization in the plane-wave matrix model. Phys. Rev. Lett. 107, 171602 (2011)
Hübener R., Sekino Y., Eisert J.: Equilibration in low-dimensional quantum matrix models. JHEP 2015, 166 (2015)
Bourgain J., Gamburd A.: A spectral gap theorem in su (d). J. Eur. Math. Soc. 14(5), 1455–1511 (2012)
Benoist, Y., de Saxcé, N.: A spectral gap theorem in simple Lie groups. Invent. Math. 205, 337–361 (2016)
Montroll E.W., Weiss G.H.: Random walks on lattices ii. J. Math. Phys. 6, 167–181 (1965)
Weiss G.H.: Aspects and applications of the random walk. J. Stat. Phys. 79(1), 497–500 (1995)
Zaburdaev, V., Denisov, S., Hanggi, P.: Perturbation spreading in many-particle systems: a random walk approach. Phys. Rev. Lett. 106(18), 180601 (2011)
Schulz, J.H.P., Barkai, E.: Fluctuations around equilibrium laws in ergodic continuous-time random walks. Phys. Rev. E 91, 062129 (2015)
Chaudhuri, P., Gao, Y., Berthier, L., Kilfoil, M., Kob, W.: A random walk description of the heterogeneous glassy dynamics of attracting colloids. J. Phys. Cond. Matter 20, 244126 (2008)
Watrous J.: Semidefinite programs for completely bounded norms. Theor. Comput. 5, 11 (2009)
Low, R.: Pseudo-randomness and learning in quantum computation. Ph.D. thesis, university of Bristol (2010)
Collins B., Sniady P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773 (2006)
Dyson, F.J.: The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486–502 (1949)
Dollard J.D., Friedman C.N.: Product integrals and the Schrödinger equation. J. Math. Phys. 18, 1598 (1977)
Ito S.: Brownian motions in a topological group and in its covering group. Rend. Circ. Mat. Palermo 1, 40–48 (1952)
Tsirelson, B.: Unitary Brownian motions are linearisable. arXiv:math/9806112 (1988)
Liao M.: Lévy Processes in Lie Groups, vol. 162. Cambridge university press, Cambridge (2004)
McKean H.P.: Stochastic Integrals. Academic Press, London (1969)
Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, 2 edn, vol. 2. Cambridge Mathematical Library, Cambridge (2000)
Diniz, I.T., Jonathan, D.: Comment on the paper “random quantum circuits are approximate 2-designs”. Commun. Math. Phys. 304, 281–293 (2011)
Diaconis P., Shahshahani M.: Generating a random permutation with random transpositions. Probab. Theory Relat. Fields 57(2), 159–179 (1981)
Choi, M.: Completely positive linear maps on complex matrices. Linear Algebra. Appl. 10, 285–290 (1975)
Dupuis, F., Berta, M., Wullschleger, J., Renner, R.: One-shot decoupling. Commun. Math. Phys. 328, 251–284 (2014)
Diehl S., Micheli A., Kantian A., Kraus B., Buechler H.P., Zoller P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4:878 (2008)
Verstraete F., Wolf M.M., Cirac J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633 (2009)
Kastoryano M.J., Wolf M.M., Eisert J: Precisely timing dissipative quantum information processing. Phys. Rev. Lett. 110, 110501 (2013)
Hayden P., Preskill J.: Black holes as mirrors: quantum information in random subsystems. JHEP 2007, 120 (2007)
Lloyd S., Preskill J.: Unitarity of black hole evaporation in final-state projection models. JHEP 2014, 1 (2014)
Georgi H.: Lie Algebras in Particle Physics. 2nd edn. Westview Press, Boulder (1999)
Roberts D.A., Yoshida B.: Chaos and complexity by design. JHEP 2017, 121 (2017)
Sattinger D.H., Weaver O.L.: Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. Springer, Berlin (1986)
Fulton W., Harris J.: Representation Theory: A First Course. Springer, Heidelberg (1991)
Eisert J., Felbinger T., Papadopoulos P., Plenio M.B., Wilkens M.: Classical information and distillable entanglement. Phys. Rev. Lett. 84, 1611 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. M. Wolf
Rights and permissions
About this article
Cite this article
Onorati, E., Buerschaper, O., Kliesch, M. et al. Mixing Properties of Stochastic Quantum Hamiltonians. Commun. Math. Phys. 355, 905–947 (2017). https://doi.org/10.1007/s00220-017-2950-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2950-6