On Entropy Production of Repeated Quantum Measurements I. General Theory

Abstract

We study entropy production (EP) in processes involving repeated quantum measurements of finite quantum systems. Adopting a dynamical system approach, we develop a thermodynamic formalism for the EP and study fine aspects of irreversibility related to the hypothesis testing of the arrow of time. Under a suitable chaoticity assumption, we establish a Large Deviation Principle and a Fluctuation Theorem for the EP.

This is a preview of subscription content, access via your institution.

References

  1. AAV

    Aharonov Y., Albert D.Z., Vaidman L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    ADS  Article  Google Scholar 

  2. AD

    Acz̀el J., Daròczy Z.: On Measures of Information and their Characterizations. Academic Press, New York (1975)

    Google Scholar 

  3. ABL

    Aharonov Y., Bergmann P.G., Lebowitz J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410–B1416 (1964)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. AV

    Aharonov, Y., Vaidman, L.: The two-state vector formalism of quantum mechanics: an updated review. In: Muga G., Sala Mayato R., Egusquiza I. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol 1, 734, pp. 399–447, 2nd ed. Springer, Berlin (2008)

  5. Ba

    Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics 16. World Scientific, River Edge, NJ (2000)

  6. BaL

    Barreira L.: Almost additive thermodynamic formalism: some recent developments. Rev. Math. Phys. 22, 1147–1179 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  7. BaY

    Barsheshat, Y.: Masters thesis, McGill, (2015)

  8. BSS

    Batalhão T.B., Souza A.M., Sarthour R.S., Oliveira I.S., Paternostro M., Lutz E., Serra R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)

    ADS  Article  Google Scholar 

  9. BB

    Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)

    ADS  Article  Google Scholar 

  10. BBB

    Bauer M., Benoist T., Bernard D.: Repeated quantum non-demolition measurements: convergence and continuous-time limit. Ann. Henri Poincaré 14, 639–679 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. BFFS

    Ballesteros M., Fraas M., Fröhlich J., Schubnel B.: Indirect acquisition of information in quantum mechanics. J. Stat. Phys. 162, 924–958 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. BFS

    Blanchard P., Fröhlich J., Schubnel B.: A “Garden of Forking Paths”—the quantum mechanics of histories of events. Nucl. Phys. B. 912, 463–484 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. BG

    Barchielli A., Gregoratti M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case, vol 782 Lecture Notes in Physics. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  14. BJPP1

    Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On entropy production of repeated quantum measurements II. Examples. (in preparation)

  15. BJPP2

    Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On the nature of the quantum detailed balance condition. (in preparation)

  16. BJPP3

    Benoist, T., Jakšić, V., Pautrat, Y., and Pillet, C.-A.: On the Rényi entropy of repeated quantum measurements. (in preparation)

  17. Bo

    Bohm D.: Quantum Theory. Prentice Hall, New York (1951)

    Google Scholar 

  18. BV

    Bomfim T., Varandas P.: Multifractal analysis of the irregular set for almost-additive sequences via large deviations. Nonlinearity 28, 3563–3585 (2015)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. Bo1

    Bowen R.: Some systems with unique equilibrium state. Math. Syst. Theory 8, 193–202 (1974)

    MathSciNet  Article  MATH  Google Scholar 

  20. Bo2

    Bowen R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol 470. Lecture Notes in Mathematics. Springer, Berlin (1975)

    Book  Google Scholar 

  21. Ca

    Carmichael H.: An Open Systems Approach to Quantum Optics, vol 18. Lecture Notes in Physics Monographs M. Springer, Berlin (1993)

    Google Scholar 

  22. CHT

    Campisi M., Hänggi P., Talkner P.: Colloquium: quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011)

    ADS  Article  MATH  Google Scholar 

  23. CFH

    Cao Y.-L., Feng D.-J., Huang W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Cr1

    Crooks G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)

    ADS  Article  Google Scholar 

  25. Cr2

    Crooks G.E.: Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008)

    ADS  Article  Google Scholar 

  26. CZC

    Chen Y., Zhao Y., Cheng W.-C.: Sub-additive pressure on a Borel set. Acta Math. Scient. 35, 1203–1213 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  27. Da

    Davies E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  28. dH

    den Hollander F.: Large Deviations. Fields Institute Monographs, AMS, Providence (2000)

    MATH  Google Scholar 

  29. Der

    Derriennic Y.: Un théorème ergodique presque sous-additif. Ann. Proba. 11, 669–677 (1983)

    Article  MATH  Google Scholar 

  30. DL

    Deffner S., Lutz E.: Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011)

    ADS  Article  Google Scholar 

  31. DZ

    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Second edition. Applications of Mathematics 38. Springer, New York 1998

  32. Do

    Dobrushin, R.L.: A Gibbsian representation for non-Gibbsian fields. Lecture given at the workshop Probability and Physics, September 1995, Renkum, Netherlands

  33. DoS

    Dobrushin R.L., Shlosman S.B.: Non-Gibbsian states and their Gibbs description. Comm. Math. Phys. 200, 125–179 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. ECM

    Evans D.J., Cohen E.G.D., Morriss G.P.: Probability of second law violation in shearing steady flows. Phys. Rev. Lett. 71, 2401–2404 (1993)

    ADS  Article  MATH  Google Scholar 

  35. Ed

    Eddington A.S.: The Nature of the Physical World. McMillan, London (1928)

    MATH  Google Scholar 

  36. EHK

    Evans D.E., Høegh-Krohn R.: Spectral properties of positive maps on C *-algebras. J. Lond. Math. Soc. 17, 345–355 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  37. EHM

    Esposito M., Harbola U., Mukamel S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. El

    Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, Berlin, 1985. Reprinted in the series Classics of Mathematics (2006)

  39. ES

    Evans D.J., Searles D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994)

    ADS  Article  Google Scholar 

  40. Fa

    Falconer K.J.: Sub-self-similar set. Transactions AMS 347, 3121–3129 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  41. FNW

    Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. Fe1

    Feng D.-J.: The variational principle for products of non-negative matrices. Nonlinearity 17, 447–457 (2004)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. Fe2

    Feng D.-J.: Lyapunov exponents for products of matrices and multifractal analysis. Part I: positive matrices. Isr. J. Math. 138, 353–376 (2003)

    Article  MATH  Google Scholar 

  44. Fe3

    Feng D.-J.: Lyapounov exponents for products of matrices and multifractal analysis. Part II: general matrices. Isr. J. Math. 170, 355–394 (2009)

    Article  MATH  Google Scholar 

  45. FL

    Feng D.-J., Lau K.-S.: The pressure function for products of non-negative matrices. Math. Res. Lett. 9, 363–378 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  46. FK

    Feng D.-J., Känemäki A.: Equilibrium states for the pressure function for products of matrices. Discrete Contin. Dyn. Syst. 30, 699–708 (2011)

    MathSciNet  Article  Google Scholar 

  47. Fe

    Fernandez, R.: Gibbsianness and non-Gibbsianness in lattice random fields. In: Bovier A., Dalibard J., Dunlop F., van Enter A., den Hollander F. (eds.) Mathematical Statistical Physics, Elsevier (2006)

  48. FS

    Falconer, K.J., Sloan, A.: Continuity of subadditive pressure for self-affine sets. Real Anal. Exch. 34, 1–16, (2008/2009)

  49. GC1

    Gallavotti G., Cohen E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    ADS  Article  Google Scholar 

  50. GC2

    Gallavotti G., Cohen E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. GPP

    Grigolini P., Pala G.M., Palatella L.: Quantum measurement and entropy production. Phys. Lett. A 285, 49–54 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. He

    Heisenberg W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    ADS  Article  MATH  Google Scholar 

  53. Ho

    Holevo A.S.: Statistical Structure of Quantum Theory, Lecture Notes in Physics Monographs, M 67. Springer, Berlin (2001)

    Google Scholar 

  54. HMPZ

    Halliwel JJ, Pérez-Mercader J, Zurek WH (eds) (1996) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge

  55. IY

    Iommi G., Yayama Y.: Almost-additive thermodynamic formalism for countable Markov shifts. Nonlinearity 25, 165–191 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. Ja

    Jakšić V (2015) Lectures on Entropy. Preprint, McGill

  57. JNPPS

    Jakšić, V., Nersesyan, V., Pillet, C.-A., Porta, M., and Shirikyan, A.: (In preparation)

  58. JOPP

    Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics—an introduction. In: Fröhlich, J., Salmhofer, M., Roeck, W. de , Mastropietro, V., Cugliandolo, L.F. Quantum Theory from Small to Large Scales., pp. Oxford University Press, Oxford (2012)

  59. JOPS

    Jakšić V., Ogata Y., Pillet C.-A., Seiringer R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  60. JPR

    Jakšić V., Pillet C.-A., Rey-Bellet L.: Entropic fluctuations in statistical mechanics I. Classical dynamical systems. Nonlinearity 24, 699–763 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. JPS

    Jakšić, V., Pillet, C.-A., Shirikyan, A.: Entropic fluctuations in thermally driven harmonic networks. J. Stat. Phys. (2016) doi:10.1007/s10955-016-1625-6

  62. JPW

    Jakšić V., Pillet C.-A., Westrich M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154, 153–187 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  63. Jar

    Jarzynski C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)

    ADS  Article  Google Scholar 

  64. KM1

    Kümmerer, B., and Maassen, H.: An ergodic theorem for repeated and continuous measurements. Preprint

  65. KM2

    Kümmerer B., Maassen H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A Math. Gen. 37, 11889–11896 (2004)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. KM1

    Kurchan J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719–3729 (1998)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. Ku2

    Kurchan, J.: A quantum fluctuation theorem. Preprint arXiv:cond-mat/0007360 (2000)

  68. KW

    Känemäki A., Vilppolainen M.: Dimensions and measures on sub-self-affine sets. Monatsh. Math. 161, 271–293 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  69. LL

    Landau L.D., Lifshitz E.M.: Statistical Physics. Pergamon Press, Oxford (1978)

    MATH  Google Scholar 

  70. LN

    Le Ny A.: Introduction to (generalized) Gibbs measures. Ensaios Matematicos 15, 1–126 (2008)

    MathSciNet  MATH  Google Scholar 

  71. LS

    Lebowitz J.L., Spohn H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  72. Li

    Lindblad G.: Non-Markovian quantum stochastic processes and their entropy. Commun. Math. Phys. 65, 281–294 (1979)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  73. Ma1

    Maes C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. Ma2

    Maes C.: On the origin and the use of fluctuation relations for the entropy. Séminaire Poincaré 2, 29–62 (2003)

    Google Scholar 

  75. MN

    Maes C., Netočný K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  76. MV

    Maes C., Verbitskiy E.: Large deviations and a fluctuation symmetry for chaotic homeomorphisms. Commun. Math. Phys. 233, 137–151 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  77. MP

    Merkli M., Penney M.: Quantum measurements of scattered particles. Mathematics 3, 92–118 (2015)

    Article  MATH  Google Scholar 

  78. MND

    Mermin N.D.: What’s wrong with this pillow?. Phys. Today 42, 9–11 (1989)

    Article  Google Scholar 

  79. OP

    Ohya M., Petz D.: Quantum Entropy and its Use, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  80. Pe

    Petz D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)

    MATH  Google Scholar 

  81. PS

    Pólya G., Szegö G.: Problems and Theorems in Analysis I. Springer, Berlin (1978)

    MATH  Google Scholar 

  82. RM

    Rondoni L., Mejía-Monasterio C.: Fluctuations in non-equilibrium statistical mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20, 1– (2007)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  83. Ro

    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1972)

    MATH  Google Scholar 

  84. Ru1

    Ruelle, D.: Thermodynamic Formalism. The Mathematical Structure of Equilibrium Statistical Mechanics. 2nd edn. Cambridge University Press, Cambridge (2004)

  85. Ru2

    Ruelle D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  86. ST

    Struppa, D.C., Tollaksen, J.M. (eds) Quantum Theory: A Two Time Success Story. Yakir Aharonov Festschrift. Springer, Milan (2014)

  87. SVW

    Srivastava Y.N., Vitiello G., Widom A.: Quantum measurements, information, and entropy production. Int. J. Mod. Phys. B 13, 3369–3382 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  88. Ta

    Tasaki, H.: Jarzynski relations for quantum systems and some applications. Preprint arXiv:cond-mat/0009244 (2000)

  89. VE

    van Enter A.C.D.: On the possible failure of the Gibbs property for measures on lattice systems. Markov Proc. Relat. Fields 2, 209–224 (1996)

    MathSciNet  MATH  Google Scholar 

  90. VN

    von Neumann J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  91. Wa

    Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79. Springer, Berlin, 1982

  92. Wi

    Wigner E.P.: The problem of measurement. Amer. J. Phys. 31, 6–15 (1963)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  93. WM

    Wiseman H.M., Milburn G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  94. YY

    Yi J., Kim Y.W.: Nonequilibrium work by quantum projective measurments. Phys. Rev. E 88, 032105 (2013)

    ADS  Article  Google Scholar 

  95. Ze

    Zeh H.D.: The Physical Basis of the Direction of Time. Springer, New York (2007)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Jakšić.

Additional information

Dedicated to the memory of Rudolf Haag

Communicated by D. Buchholz, K. Fredenhagen, Y. Kawahigashi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benoist, T., Jakšić, V., Pautrat, Y. et al. On Entropy Production of Repeated Quantum Measurements I. General Theory. Commun. Math. Phys. 357, 77–123 (2018). https://doi.org/10.1007/s00220-017-2947-1

Download citation