Categorial Subsystem Independence as Morphism Co-possibility

Abstract

This paper formulates a notion of independence of subobjects of an object in a general (i.e., not necessarily concrete) category. Subobject independence is the categorial generalization of what is known as subsystem independence in the context of algebraic relativistic quantum field theory. The content of subobject independence formulated in this paper is morphism co-possibility: two subobjects of an object will be defined to be independent if any two morphisms on the two subobjects of an object are jointly implementable by a single morphism on the larger object. The paper investigates features of subobject independence in general, and subobject independence in the category of C*-algebras with respect to operations (completely positive unit preserving linear maps on C*-algebras) as morphisms is suggested as a natural subsystem independence axiom to express relativistic locality of the covariant functor in the categorial approach to quantum field theory.

References

  1. 1

    Araki, H.: Mathematical Theory of Quantum Fields, volume 101 of International Series of Monograps in Physics. Oxford University Press, Oxford (1999) [Originally published in Japanese by Iwanami Shoten Publishers, Tokyo (1993)]

  2. 2

    Arveson, W.: Subalgebras of C *-algebras. Acta Math. 123, 141–224 (1969)

  3. 3

    Awodey S.: Category Theory, 2nd edn. Oxford University Press, Oxford (2010)

    Google Scholar 

  4. 4

    Blackadar B.: Operator Algebras: Theory of C*-Algebras and von Neumann Algebras. Encyclopaedia of Mathematical Sciences, 1st edn. Springer, Berlin (2005)

    Google Scholar 

  5. 5

    Brunetti, R., Fredenhagen, K.: Algebraic approach to quantum field theory. In: Francoise, J.-P., Naber, G.L., Tsun, T.S. (eds.) Elsevier Encyclopedia of Mathematical Physics, pp. 198–204. Academic Press, Amsterdam (2006). arXiv:math-ph/0411072

  6. 6

    Brunetti, R., Fredenhagen, K.: Quantum field theory on curved backgrounds. In: Bär, C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes, volume 786 of Lecture Notes in Physics, chapter 5, pp. 129–155. Springer, Heidelberg (2009)

  7. 7

    Brunetti R., Fredenhagen K., Paniz I., Rejzner K.: The locality axiom in quantum field theory and tensor products of C *-algebras. Rev. Math. Phys. 26, 1450010 (2014). arXiv:1206.5484 [math-ph]

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003) arXiv:math-ph/0112041

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Buchholz, D.: Algebraic quantum field theory: a status report. In: Grigoryan, A., Fokas, A., Kibble, T., Zegarlinski, B. (eds.) XIIIth International Congress on Mathematical Physics, Imperial College, London, UK, pp. 31–46. International Press of Boston, Sommervile, MA, USA (2001). arXiv:math-ph/0011044

  10. 10

    Buchholz D., Haag R.: The quest for understanding in relativistic quantum physics. J. Math. Phys. 41, 3674–3697 (2000) arXiv:hep-th/9910243

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Buchholz D., Summers S.J.: Quantum statistics and locality. Phys. Lett. A 337, 17–21 (2005)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Franz, U.: What is stochastic independence? In: Obata, N., Matsui, T., Hora, A., Kenkyūjo, S.K., Daigaku, K. (eds.) Non-commutativity, Infinite-dimensionality and Probability at the Crossroads: Proceedings of the RIMS Workshop on Infinite-Dimensional Analysis and Quantum Probability: Kyoto, Japan, 20–22 November, 2001, QP–PQ Quantum Probability and White Noise Analysis, pp. 254–274. World Scientific (2002). arXiv:math/0206017

  13. 13

    Fredenhagen K.: Lille 1957: the birth of the concept of local algebras of observables. Eur. Phys. J. H 35, 239–241 (2010)

    Article  Google Scholar 

  14. 14

    Fredenhagen K., Reijzner K.: Quantum field theory on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Fredenhagen, K., Rejzner K.: Local covariance and background independence. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory and Gravity. Conceptual and Mathematical Advances in the Search for a Unified Framework, pp. 15–24. Birkhäuser, Springer, Basel (2012). arXiv:1102.2376 [math-ph]

  16. 16

    Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1992)

    Google Scholar 

  17. 17

    Haag, R.: Discussion of the ‘axioms’ and the asymptotic properties of a local field theory with composite particles. Eur. Phys. J. H. 35, 243–253 (2010) (English translation and re-publication of a talk given at the international conference on mathematical problems of the quantum theory of fields, Lille, June 1957)

  18. 18

    Haag R.: Local algebras. A look back at the early years and at some achievements and missed opportunities. Eur. Phys. J. H 35, 255–261 (2010)

    Article  Google Scholar 

  19. 19

    Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. 20

    Horuzhy S.S.: Introduction to Algebraic Quantum Field Theory. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  21. 21

    Kalmbach G.: Orthomodular Lattices. Academic Press, London (1983)

    Google Scholar 

  22. 22

    Kraus K.: States, Effects and Operations, volume 190 of Lecture Notes in Physics. Springer, New York (1983)

    Google Scholar 

  23. 23

    Maeda F.: Direct sums and normal ideals of lattices. J. Sci. Hiroshima Univ. Ser. A 14, 85–92 (1949)

    MathSciNet  MATH  Google Scholar 

  24. 24

    Paulsen V.: Completely Bounded Maps and Operator Algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  25. 25

    Pierce, R.S.: Introduction to the Theory of Abstract Algebras. Dover Publications, New York (2014) (Originally published by Holt, Rinehart and Winston, Inc., New York, 1968)

  26. 26

    Rédei M.: Logical independence in quantum logic. Found. Phys. 25, 411–422 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27

    Rédei M.: Logically independent von Neumann lattices. Int. J. Theor. Phys. 34, 1711–1718 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Rédei, M.: Quantum Logic in Algebraic Approach, volume 91 of Fundamental Theories of Physics. Kluwer Academic Publisher, Dordrecht (1998)

  29. 29

    Rédei M.: Operational independence and operational separability in algebraic quantum mechanics. Found. Phys. 40, 1439–1449 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. 30

    Rédei M.: A categorial approach to relativistic locality. Stud. Hist. Philos. Mod. Phys. 48, 137–146 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31

    Rédei, M.: Categorial local quantum physics. In: Butterfield, J., Halvorson, H., Rédei, M., Kitajima, J., Buscemi, F., Ozawa, M. (eds.) Reality and Measurement in Algebraic Quantum Theory, Proceedings in Mathematics and Statistics (PROMS). Springer (2018) (forthcoming)

  32. 32

    Rédei, M., Summers, S.J.: When are quantum systems operationally independent? Int. J. Theor. Phys. 49, 3250–3261 (2010)

  33. 33

    Rédei, M., Valente, G.: How local are local operations in local quantum field theory? Stud. Hist. Philos. Mod. Phys. 41, 346–353 (2010)

  34. 34

    Summers S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Summers S.J.: Subsystems and independence in relativistic microphysics. Stud. Hist. Philos. Mod. Phys. 40, 133–141 (2009). arXiv:0812.1517 [quant-ph]

    Article  MATH  Google Scholar 

  36. 36

    Summers, S.J.: A perspective on constructive quantum field theory (2012). arXiv:1203.3991 [math-ph] (This is an expanded version of an article commissioned for UNESCO’s Encyclopedia of Life Support Systems (EOLSS))

  37. 37

    Weinberg S.: The Quantum Theory of Fields, vol. 1: Foundations. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miklós Rédei.

Additional information

Communicated by D. Buchholz, K. Fredenhagen, Y. Kawahigashi

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gyenis, Z., Rédei, M. Categorial Subsystem Independence as Morphism Co-possibility. Commun. Math. Phys. 357, 447–465 (2018). https://doi.org/10.1007/s00220-017-2940-8

Download citation