Communications in Mathematical Physics

, Volume 357, Issue 1, pp 61–75 | Cite as

Examples of Subfactors from Conformal Field Theory



Conformal field theory (CFT) in two dimensions provides a rich source of subfactors. The fact that there are so many subfactors coming from CFT have led people to conjecture that perhaps all finite depth subfactors are related to CFT. In this paper we examine classes of subfactors from known CFT. In particular we identify the so called \({3^{\mathbb{Z}_2\times \mathbb{Z}_2}}\) subfactor with an intermediate subfactor from conformal inclusion, and construct new subfactors from recent work on holomorphic CFT with central charge 24.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bantay P.: The kernel of the modular representation and the Galois action in RCFT. Commun. Math. Phys. 233(3), 423–438 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bischoff, M.: The Relation Between Subfactors Arising from Conformal Nets and the Realization of Quantum Doubles. arXiv:1511.08931
  3. 3.
    Bischoff M.: A remark on CFT realization of quantum doubles of subfactors. Case index <  4. Lett. Math. Phys. 106, 341 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bisch D., Haagerup U.: Composition of subfactors: new examples of infinite depth subfactors. Ann. Sci. Ecole Norm Sup. 29, 329–383 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Böckenhauer J., Evans D.E.: Modular invariants, graphs and α-induction for nets of subfactors. I. Commun. Math. Phys. 197, 361–386 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Böckenhauer, J., Evans, D.E., Kawahigashi, Y.: On α-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208, 429–487 (1999). Also see arXiv:math.OA/9904109
  7. 7.
    Böckenhauer, J., Evans, D.E., Kawahigashi, Y.: Longo–Rehren subfactors arising from α-induction. Publ. Res. Inst. Math. Sci. 37(1), 1–35 (2001–2003)Google Scholar
  8. 8.
    Calegari, F., Morrison, S., Snyder N., with an appendix by Victor Ostrik: Cyclotomic integers, fusion categories, and subfactors. Commun. Math. Phys. 303(3), 845–896 (2011)Google Scholar
  9. 9.
    Dong C., Mason G.: Holomorphic vertex operator algebras of small central charge. Pac. J. Math. 213, 253–266 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dong C., Xu F.: Conformal nets associated with lattices and their orbifolds. Adv. Math. 206(1), 279–306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    van Ekeren, J., Moller, S.: Construction and Classification of Holomorphic Vertex Operator Algebras. arXiv:1507.08142
  12. 12.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Mathematical Surveys and Monographs, 205. American Mathematical Society, Providence (2015)Google Scholar
  13. 13.
    Doplicher S., Roberts J.: A new duality theory for compact groups. Invent. Math. 98, 157–218 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Doplicher, S., Haag, R., Roberts, J.E.: Localobservables and particle statistics, I. Commun. Math. Phys. 23, 199–230 (1971); II. 35, 49–85 (1974)Google Scholar
  15. 15.
    Evans, D., Gannon, T.: The exoticness and realisability of twisted Haagerup–Izumi modular data. Commun. Math. Phys. 307(2), 463–512 (2011)Google Scholar
  16. 16.
    Evans D., Kawahigashi Y.: Orbifold subfactors from Hecke algebras II. Quantum doubles and braiding. Commun. Math. Phys. 196, 331–361 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grossman, P., Izumi, M.: Quantum doubles of generalized Haagerup subfactors and their orbifolds. arXiv:1501.07679
  18. 18.
    Giorgetti, L., Rehren, K.-H.: Braided categories of endomorphisms as invariants for local quantum field theories. arXiv:1512.01995
  19. 19.
    Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181, 11–35 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Izumi M.: The structure of sectors associated with Longo–Rehren inclusions. II. Examples. Rev. Math. Phys. 13, 603–674 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Izumi, M.: A Cuntz algebra approach to the classification of near-group categories. arXiv:1512.04288
  22. 22.
    Jones, V.: von Neumann algebras in mathematics and physics. In: Proceedings of the International Congress of Mathematicians, Kyoto, pp. 121–138 (1990)Google Scholar
  23. 23.
    Jones, V.: Planar algebras I. J. Math. arXiv:math.QA/9909027 (to appear in New Zealand)
  24. 24.
    Jones, V.: Some unitary representations of Thompson’s groups F and T. arXiv:1412.7740
  25. 25.
    Jones V., Morrison S., Snyder N.: The classification of subfactors of index at most 5. Bull. Am. Math. Soc. 51(2), 277–327 (2014)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kac V.G., Longo R., Xu F.: Solitons in affine and permutation orbifolds. Commun. Math. Phys. 253(3), 723–764 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kac V.G., Wakimoto M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70, 156–234 (1988)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kac V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefMATHGoogle Scholar
  29. 29.
    Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c < 1. Ann. Math. 2 160, 493–522 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lam C., Shimakura H.: Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms. Commun. Math. Phys. 342(3), 803–841 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lam C.H., Shimakura H.: Classification of holomorphic framed vertex operator algebras of central charge 24. Am. J. Math. 137, 111–137 (2015)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Liu, Z.: Yang–Baxter relation planar algebras. arXiv:1507.06030
  34. 34.
    Liu, Z., Xu, F.: Centralizer algebras from conformal inclusions, preprint 2016Google Scholar
  35. 35.
    Liu, Z.: Composed inclusions of A 3 and A 4 subfactors. Adv. Math. 279, 307–371 (2015)Google Scholar
  36. 36.
    Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Ng R., Schauenburg P.: Congruence subgroups and generalized Frobenius–Schur indicators. Commun. Math. Phys. 300(1), 1–46 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Ostrik, V., Sun, M.: Level-rank duality via tensor categories. Commun. Math. Phys. 326(1), 49–61 (2014)Google Scholar
  39. 39.
    Pimsner M., Popa S.: Entropy and index for subfactors. Ann. Sci. Ec. Norm. Sup. 19, 57–106 (1986)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Pressley A., Segal G.: Loop Groups. Oxford University Press, Oxford (1986)MATHGoogle Scholar
  41. 41.
    Petkova, V., Zuber, J.-B.: Conformal Field Theories, Graphs and Quantum Algebras. In: Kashiwara, M., Miwa, T. (eds.) Mathphys Odyssey 2001—Integrable Models and Beyond. Progress in Mathematics, Birkhauser. arXiv:hep-th/0108236
  42. 42.
    Turaev V.G.: Quantum Invariants of Knots and 3-Manifolds. Walter de Gruyter, Berlin (1994)MATHGoogle Scholar
  43. 43.
    Schellekens A.N.: Meromorphic c = 24 conformal field theories. Commun. Math. Phys. 153(1), 159–185 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Toledano Laredo, V.: Fusion of Positive Energy Representations of LSpin(2n). Thesis (1997). arXiv:math/0409044
  45. 45.
    Wassermann A.: Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU (N) using bounded operators. Invent. Math. 133, 467–538 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Xu F.: Algebraic coset conformal field theories. Commun. Math. Phys. 211, 1–43 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Xu, F.: On representing some lattices as lattices of intermediate subfactors of finite index. Adv. Math. 220(5), 1317–1356 (2009)Google Scholar
  48. 48.
    Xu, F.: Applications of braided endomorphisms from conformal inclusions. Int. Math. Res. Not. 1998, 5–23 (1998)Google Scholar
  49. 49.
    Xu F.: 3-Manifold invariants from cosets. J. Knot Theory Ramif. 14, 21–90 (2005)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Xu F.: New braided endomorphisms from conformal inclusions. Commun. Math. Phys. 192, 347–403 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Xu F.: Some computations in the cyclic permutations of completely rational nets. Commun. Math. Phys. 267, 757–782 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Xu F.: Generalized Goodman–Harpe–Jones construction of subfactors, II. Commun. Math. Phys. 184, 493–508 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Xu F.: Jones–Wassermann subfactors for disconnected intervals. Commun. Contemp. Math. 2(3), 307–347 (2000)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Xu F.: Algebraic orbifold conformal field theories. Proc. Natl. Acad. Sci. USA 97(26), 14069–14073 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Xu F.: An application of mirror extensions. Commun. Math. Phys. 290(1), 83–103 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Xu F.: Mirror extensions of local nets. Commun. Math. Phys. 270, 835–847 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsFoshan UniversityFoshanChina
  2. 2.Department of MathematicsUniversity of California at RiversideRiversideUSA

Personalised recommendations