Skip to main content

Advertisement

Log in

On the Geometry of the Level Sets of Bounded Static Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we present a new approach to the study of asymptotically flat static metrics arising in general relativity. In the case where the static potential is bounded, we introduce new quantities which are proven to be monotone along the level set flow of the potential function. We then show how to use these properties to detect the rotational symmetry of the static solutions, deriving a number of sharp inequalities. Among these, we prove the validity—without any dimensional restriction—of the Riemannian Penrose Inequality, as well as of a reversed version of it, in the class of asymptotically flat static metrics with connected horizon. As a consequence of our analysis, a simple proof of the classical 3-dimensional Black Hole Uniqueness Theorem is recovered and some geometric conditions are discussed under which the same statement holds in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostiniani V., Mazzieri L.: Riemannian aspects of potential theory. J. Math. Pures Appl. 104(3), 561–586 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agostiniani, V., Mazzieri, L.: Monotonicity formulas in potential theory. arXiv:1606.02489

  3. Agostiniani V., Mazzieri L.: Comparing monotonicity formulas for electrostatic potentials and static metrics. Rendiconti Lincei Matematica e Applicazioni 28, 7–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Da Prato, G., Mennucci, A.: Introduction to measure theory and integration. Lecture notes 10. Edizioni della Normale (2011)

  5. Beig R.: Arnowitt–Deser–Misner energy and g 00. Phys. Lett. A 69(3), 153–155 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bour, V., Carron, G.: Optimal integral pinching results. arXiv:1203.0384

  7. Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

  8. Bray, H.L., Lee, D.A.: On the Riemannian Penrose Inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

  9. Catino G., Mantegazza C., Mazzieri L., Rimoldi M.: Locally conformally flat quasi-Einstein manifolds. Journal für die Reine und Angewandte Mathematik 675, 181–189 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Catino G., Mastrolia P., Monticelli D.D., Rigoli M.: On the geometry of gradient Einstein-type manifolds. Pac. J. Math. 286(1), 39–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bunting G.L., Masood-Ul-Alam A.K.M.: Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravit. 19, 147–154 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cederbaum, C.: Uniqueness of photon spheres in static vacuum asymptotically flat spacetimes. arXiv:1406.5475

  13. Cheeger J., Naber A., Valtorta D.: Critical sets of elliptic equations. Commun. Pure Appl. Math. 68(2), 173–209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen B.-Y.: On a theorem of Fenchel–Borsuk–Willmore–Chern–Lashof. Mathematische Annalen 194(1), 19–26 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen B.-Y.: On the total curvature of immersed manifolds, I: An inequality of Fenchel-Borsuk-Willmore. Am. J. Math. 93(1), 148–162 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chruściel P.T.: On analyticity of static vacuum metrics at non-degenerate killing horizons. Acta Phys. Pol. B36, 17–26 (2005)

    MATH  Google Scholar 

  17. Chruściel, P.T., Lopes Costa, J., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. , 15, 2012–2017. http://www.livingreviews.org/lrr-2012-7

  18. Gibbons G., Ida D., Shiromizu T.: Uniqueness and nonuniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89(4), 041101 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hardt R., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Nadirashvili N.: Critical sets of solutions to elliptic equations. J. Differ. Geom. 51(2), 359–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hardt R., Simon L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30(2), 505–522 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. He C., Petersen P., Wylie W.: On the classification of warped product Einstein metrics. Commun. Anal. Geom. 20(2), 271–311 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hollands S., Ishibashi A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quantum Gravity 29(16), 163001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Huisken G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose Inequality. J. Differ. Geom. 59(3), 353–437 (2001)

  24. Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    Article  ADS  Google Scholar 

  25. Lin F.-H.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 44(3), 287–308 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mars M., Reiris M.: Global and uniqueness properties of stationary and static spacetimes with outer trapped surfaces. Commun. Math. Phys. 322, 633–666 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Miao P.: A remark on boundary effects in static vacuum initial data sets. Class. Quantum Gravity 22(11), L53 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Reiris M.: The asymptotic of static isolated systems and a generalized uniqueness for Schwarzschild. Class. Quantum Gravity 32(19), 195001 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Robinson D.C.: A simple proof of the generalization of Israel’s theorem. Gen. Relativ. Gravit. 8(8), 695–698 (1977)

    Article  ADS  MATH  Google Scholar 

  30. Robinson, D.C.: Four decades of Black Hole Uniqueness Theorems. In: The Kerr Spacetime: Rotating Black Holes in General Relativity, pp. 115–143. Cambridge University Press, Cambridge (2009)

  31. Willmore T.J.: Mean curvature of immersed surfaces. An. Şti. Univ. “All. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 14, 99–103 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Agostiniani.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostiniani, V., Mazzieri, L. On the Geometry of the Level Sets of Bounded Static Potentials. Commun. Math. Phys. 355, 261–301 (2017). https://doi.org/10.1007/s00220-017-2922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2922-x

Navigation