Abstract
In this paper we present a new approach to the study of asymptotically flat static metrics arising in general relativity. In the case where the static potential is bounded, we introduce new quantities which are proven to be monotone along the level set flow of the potential function. We then show how to use these properties to detect the rotational symmetry of the static solutions, deriving a number of sharp inequalities. Among these, we prove the validity—without any dimensional restriction—of the Riemannian Penrose Inequality, as well as of a reversed version of it, in the class of asymptotically flat static metrics with connected horizon. As a consequence of our analysis, a simple proof of the classical 3-dimensional Black Hole Uniqueness Theorem is recovered and some geometric conditions are discussed under which the same statement holds in higher dimensions.
Similar content being viewed by others
References
Agostiniani V., Mazzieri L.: Riemannian aspects of potential theory. J. Math. Pures Appl. 104(3), 561–586 (2015)
Agostiniani, V., Mazzieri, L.: Monotonicity formulas in potential theory. arXiv:1606.02489
Agostiniani V., Mazzieri L.: Comparing monotonicity formulas for electrostatic potentials and static metrics. Rendiconti Lincei Matematica e Applicazioni 28, 7–20 (2017)
Ambrosio, L., Da Prato, G., Mennucci, A.: Introduction to measure theory and integration. Lecture notes 10. Edizioni della Normale (2011)
Beig R.: Arnowitt–Deser–Misner energy and g 00. Phys. Lett. A 69(3), 153–155 (1978)
Bour, V., Carron, G.: Optimal integral pinching results. arXiv:1203.0384
Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)
Bray, H.L., Lee, D.A.: On the Riemannian Penrose Inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)
Catino G., Mantegazza C., Mazzieri L., Rimoldi M.: Locally conformally flat quasi-Einstein manifolds. Journal für die Reine und Angewandte Mathematik 675, 181–189 (2013)
Catino G., Mastrolia P., Monticelli D.D., Rigoli M.: On the geometry of gradient Einstein-type manifolds. Pac. J. Math. 286(1), 39–67 (2017)
Bunting G.L., Masood-Ul-Alam A.K.M.: Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravit. 19, 147–154 (1987)
Cederbaum, C.: Uniqueness of photon spheres in static vacuum asymptotically flat spacetimes. arXiv:1406.5475
Cheeger J., Naber A., Valtorta D.: Critical sets of elliptic equations. Commun. Pure Appl. Math. 68(2), 173–209 (2015)
Chen B.-Y.: On a theorem of Fenchel–Borsuk–Willmore–Chern–Lashof. Mathematische Annalen 194(1), 19–26 (1971)
Chen B.-Y.: On the total curvature of immersed manifolds, I: An inequality of Fenchel-Borsuk-Willmore. Am. J. Math. 93(1), 148–162 (1971)
Chruściel P.T.: On analyticity of static vacuum metrics at non-degenerate killing horizons. Acta Phys. Pol. B36, 17–26 (2005)
Chruściel, P.T., Lopes Costa, J., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. , 15, 2012–2017. http://www.livingreviews.org/lrr-2012-7
Gibbons G., Ida D., Shiromizu T.: Uniqueness and nonuniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89(4), 041101 (2002)
Hardt R., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Nadirashvili N.: Critical sets of solutions to elliptic equations. J. Differ. Geom. 51(2), 359–373 (1999)
Hardt R., Simon L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30(2), 505–522 (1989)
He C., Petersen P., Wylie W.: On the classification of warped product Einstein metrics. Commun. Anal. Geom. 20(2), 271–311 (2012)
Hollands S., Ishibashi A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quantum Gravity 29(16), 163001 (2012)
Huisken G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose Inequality. J. Differ. Geom. 59(3), 353–437 (2001)
Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)
Lin F.-H.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 44(3), 287–308 (1991)
Mars M., Reiris M.: Global and uniqueness properties of stationary and static spacetimes with outer trapped surfaces. Commun. Math. Phys. 322, 633–666 (2013)
Miao P.: A remark on boundary effects in static vacuum initial data sets. Class. Quantum Gravity 22(11), L53 (2005)
Reiris M.: The asymptotic of static isolated systems and a generalized uniqueness for Schwarzschild. Class. Quantum Gravity 32(19), 195001 (2015)
Robinson D.C.: A simple proof of the generalization of Israel’s theorem. Gen. Relativ. Gravit. 8(8), 695–698 (1977)
Robinson, D.C.: Four decades of Black Hole Uniqueness Theorems. In: The Kerr Spacetime: Rotating Black Holes in General Relativity, pp. 115–143. Cambridge University Press, Cambridge (2009)
Willmore T.J.: Mean curvature of immersed surfaces. An. Şti. Univ. “All. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 14, 99–103 (1968)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. T. Chruściel
Rights and permissions
About this article
Cite this article
Agostiniani, V., Mazzieri, L. On the Geometry of the Level Sets of Bounded Static Potentials. Commun. Math. Phys. 355, 261–301 (2017). https://doi.org/10.1007/s00220-017-2922-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2922-x