Abstract
We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597–644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).
This is a preview of subscription content, access via your institution.
References
Aldous, D.: Weak convergence and the general theory of processes. (1981). https://www.stat.berkeley.edu/~aldous/Papers/weak-gtp.pdf. Accessed 24 May 2017
Avram, F., Taqqu, M.S.: Noncentral limit theorems and Appell polynomials. Ann. Probab. 15(2), 767–775 (1987)
Ben Arous G., Deuschel J.-D.: The construction of the d + 1-dimensional Gaussian droplet. Comm. Math. Phys. 179, 467–488 (1996)
Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)
Billingsley P.: Convergence of Probability Measures. Wiley, Hoboken (2013)
Borodin A., Corwin I.: Macdonald processes. Probab. Theory Relat. Fields 158(1), 225–400 (2014)
Borodin A., Corwin I., Ferrari P.L.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimensions. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014)
Caputo P.: Uniform Poincaréinequalities for unbounded conservative spin systems: the non-interacting case. Stoch. Process. Appl. 106(2), 223–244 (2003)
Chentsov N.N.: Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the heuristic approach to the Kolmogorov–Smirnov tests. Theory Probab. Appl. 1(1), 140–144 (1956)
Corwin I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices: Theory Appl. 1(01), 1130001 (2012)
Corwin I., Quastel J., Remenik D.: Renormalization fixed point of the KPZ universality class. J. Stat. Phys. 160(5), 815–834 (2015)
Corwin, I., Shen, H., Tsai, L-C.: ASEP (q, j) converges to the KPZ equation. arXiv preprint arXiv:1602.01908 (2016)
Corwin, I., Tsai, L-C.: KPZ equation limit of higher-spin exclusion processes. arXiv preprint arXiv:1505.04158 (2015)
Chang C.C., Yau H.-T.: Fluctuations of one dimensional Ginzburg–Landau models in nonequilibrium. Commun. Math. Phys. 145, 209–239 (1992)
Deuschel J.-D., Giacomin G., Ioffe D.: Large deviations and concentration properties for \({\nabla \phi}\) interface models. Probab. Theory Relat. Fields 117, 49–111 (2000)
Dembo A., Tsai L-C: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2016)
Donsker M.D., Varadhan S.R.S.: Large deviations from a hydrodynamic scaling limit. Commun. Pure Appl. Math. 42, 243–270 (1989)
Ethier, S.N., Kurtz, T.G.: Markov processes: characterization and convergence, vol. 282. Wiley, Hoboken (2009)
Franco T., Gonçalves P., Simon M.: Crossover to the stochastic Burgers equation for the WASEP with a slow bond. Commun. Math. Phys. 346(3), 801–838 (2016)
Friz P.K., Hairer M.: A Course on Rough Paths. Springer, Berlin (2014)
Funaki T., Nishikawa T.: Large deviations for the Ginzburg–Landau \({\nabla \phi}\) interface model. Probab. Theory Relat. Fields 120, 535–568 (2001)
Funaki T., Quastel J.: KPZ equation, its renormalization and invariant measures. Stoch. Partial Differ. Equ.: Anal. Comput. 3(2), 159–220 (2015)
Fritz J.: On the hydrodynamic limit of a one-dimensional Ginzburg–Landau lattice model. The a priori bounds. J. Stat. Phys. 47(3), 551–572 (1987)
Funaki T., Spohn H.: Motion by mean curvature from the Ginzburg–Landau \({\nabla \phi}\) interface model. Commun. Math. Phys. 185(1), 1–36 (1997)
Ferrari P.L., Spohn H., Weiss T.: Scaling limit for Brownian motions with one-sided collisions. Ann. Appl. Probab. 25(3), 1349–1382 (2015)
Funaki, T.: Stochastic interface models. In: Picard, J. (ed.) Lectures on Probability Theory and Statistics, Ecole d’Eté de Probabilités de Saint-Flour XXXIII-2003, Springer (2005)
Gubinelli M., Imkeller P., Perkowski N.: Paracontrolled distributions and singular PDEs. Forum Math., Pi. 3(6), 1–75 (2015)
Gubinelli M., Jara M.: Regularization by noise and stochastic Burgers equations. Stoch. Partial Differ. Equ.: Anal. Comput. 1(2), 325–350 (2013)
Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)
Gonçalves P., Jara M., Sethuraman S.: A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43(1), 286–338 (2015)
Gonçalves P., Simon M.: Second order Boltzmann–Gibbs principle for polynomial functions and applications. J. Stat. Phys. 166(1), 90–113 (2017)
Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuations for \({\nabla \varphi}\) interface model. Ann. Probab. 29(3), 1138–1172, (2001)
Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique. arXiv preprint arXiv:1508.07764 (2015)
Gubinelli M., Perkowski N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)
Gubinelli, M., Perkowski, N.: The Hairer–Quastel universality result at stationarity. arXiv preprint arXiv:1602.02428 (2016)
Guo M.Z., Papanicolaou G.C., Varadhan S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)
Hairer M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)
Hairer M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)
Hoshino, M.: Paracontrolled calculus and Funaki–Quastel approximation for the KPZ equation. arXiv preprint arXiv:1605.02624 (2016)
Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ. arXiv preprint arXiv:1512.07845 (2015).
Hairer, M., Shen, H.: A central limit theorem for the KPZ equation. arXiv preprint arXiv:1507.01237 (2015).
Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes: time symmetry and martingale approximation, vol. 345. Springer Science & Business Media, Berlin (2012)
Labbé, Cyril: Weakly asymmetric bridges and the KPZ equation. to appear in Commun. Math. Phys arXiv:1603.03560
Millet A., Nualart D., Sanz M.: Integration by parts and time reversal for diffusion processes. Ann. Probab. 17(1), 208–238 (1989)
Menz Georg, Otto Felix: Uniform logarithmic sobolev inequalities for conservative spin systems with super-quadratic single-site potential. Ann. Probab. 41(3B), 208–238 (2013)
Mitoma, I.: Tightness of probabilities on C([0, 1]; Y′) and D([0, 1]; Y′). Ann. Prob. 11(4), 989–999 (1983)
Otto, F., Weber, H.: Quasilinear SPDEs via rough paths. arXiv preprint arXiv:1605.09744 (2016)
Quastel, J.: The Kardar–Parisi–Zhang equation and universality class. In: XVIIth International Congress on Mathematical Physics. pp 113–133 (2014)
Quastel J., Spohn H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160(4), 965–984 (2015)
Russo, F., Vallois, P.: Elements of stochastic calculus via regularization. Séminaire de Probabilités XL, pp 147–185. Springer Berlin (2007)
Spohn H.: Equilibrium fluctuations for interacting Brownian particles. Commun. Math. Phys. 103, 1–33 (1986)
Spohn, H.: The Kardar–Parisi–Zhang equation-a statistical physics perspective. arXiv preprint arXiv:1601.00499 (2016)
Sasamoto T., Spohn H.: Superdiffusivity of the 1D lattice Kardar–Parisi–Zhang equation. J. Stat. Phys. 137(5–6), 917–935 (2009)
Sasamoto T., Spohn H.: Point-interacting Brownian motions in the KPZ universality class. Electron. J. Probab. 20, 87 (2015)
Zhu M.: Equilibrium fluctuations for one-dimensional Ginzburg–Landau lattice model. Nagoya Math. J. 117, 63–92 (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
J. Diehl: Finanical support by the DAAD P.R.I.M.E. program is gratefully acknowledged.
N. Perkowski: Financial support by the DFG via Research Unit FOR 2402 is gratefully acknowledged.
Rights and permissions
About this article
Cite this article
Diehl, J., Gubinelli, M. & Perkowski, N. The Kardar–Parisi–Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions. Commun. Math. Phys. 354, 549–589 (2017). https://doi.org/10.1007/s00220-017-2918-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2918-6