Communications in Mathematical Physics

, Volume 354, Issue 1, pp 213–230 | Cite as

Regularity of the 3D Stationary Hall Magnetohydrodynamic Equations on the Plane

  • Dongho Chae
  • Jörg Wolf


We study the regularity of weak solutions to the 3D valued stationary Hall magnetohydrodynamic equations on \({\mathbb{R}^2}\). We prove that every weak solution is smooth. Furthermore, we prove a Liouville type theorem for the Hall equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acheritogaray M., Degond P., Frouvelle A., Liu J-G.: Kinetic formulation and global existence for the Hall-magnetohydrodynamic system. Kinet. Relat. Models 4, 901–918 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chae D., Degond P., Liu J-G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. Henri Poincare Anal. Nonlineaire 31, 555–565 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chae D., Lee J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J. Differ. Equ. 256(11), 3835–3858 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chae D., Schonbek M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255(11), 3971–3982 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chae D., Weng S.: Singularity formation for the incompressible Hall-MHD equations without resistivity. Ann. Inst. Henri Poincare Anal. Nonlineaire 33, 1009–1022 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chae D., Wolf J.: On partial regularity for the steady Hall magnetohydrodynamics system. Commun. Math. Phys. 339(3), 1147–1166 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chae D., Wolf J.: On partial regularity for the 3D non-stationary Hall magnetohydrodynamics equations on the plane. SIAM J. Math. Anal. 48(1), 443–469 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dumas E., Sueur F.: On the weak solutions to the Maxwell–Landau–Lifshitz equations and to the Hall-magnetohydrodynamic equations. Commun. Math. Phys. 330, 1179–1225 (2014)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Fan J., Huang S., Nakamura G.: Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations. Appl. Math. Lett. 26, 963–967 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Frehse J.: On two-dimensional quasi-linear elliptic system. Manuscr. Math. 28, 21–49 (1979)CrossRefMATHGoogle Scholar
  11. 11.
    Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals Mathematics Studies No. 105. Princeton University Press, Princeton (1983)Google Scholar
  12. 12.
    Widman K-O.: Hölder continuity of solutions of elliptic systems. Manuscr. Math. 5, 299–308 (1971)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsChung-Ang UniversitySeoulRepublic of Korea
  2. 2.Department of MathematicsHumboldt University of BerlinBerlinGermany

Personalised recommendations