Communications in Mathematical Physics

, Volume 354, Issue 1, pp 1–30 | Cite as

The Tetrahedral Zamolodchikov Algebra and the \({AdS_5\times S^5}\) S-matrix

  • Vladimir Mitev
  • Matthias Staudacher
  • Zengo Tsuboi
Article

Abstract

The S-matrix of the \({AdS_5\times S^5}\) string theory is a tensor product of two centrally extended su\({(2|2)\ltimes \mathbb{R}^2}\) S-matrices, each of which is related to the R-matrix of the Hubbard model. The R-matrix of the Hubbard model was first found by Shastry, who ingeniously exploited the fact that, for zero coupling, the Hubbard model can be decomposed into two XX models. In this article, we review and clarify this construction from the AdS/CFT perspective and investigate the implications this has for the \({AdS_5\times S^5}\) S-matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shastry B.S.: Exact integrability of the one-dimensional Hubbard model. Phys. Rev. Lett. 56, 2453 (1986)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Essler F.H.L., Frahm H., Göhmann F., Klümper A., Korepin V.E.: The One-Dimensional Hubbard Model. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  3. 3.
    Beisert N.: The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry. J. Stat. Mech. 0701, P01017 (2007) arXiv:nlin/0610017 Google Scholar
  4. 4.
    Beisert N., Eden B., Staudacher M.: Transcendentality and crossing. J. Stat. Mech. 0701, P01021 (2007) arXiv:hep-th/0610251 Google Scholar
  5. 5.
    Martins M.J., Melo C.S.: The Bethe ansatz approach for factorizable centrally extended S-matrices. Nucl. Phys. B 785, 246 (2007) arXiv:hep-th/0703086 ADSCrossRefMATHGoogle Scholar
  6. 6.
    Beisert N.: The \({SU(2|2)}\) dynamic S-matrix. Adv. Theor. Math. Phys. 12, 945 (2008) arXiv:hep-th/0511082 CrossRefMATHGoogle Scholar
  7. 7.
    Plefka J., Spill F., Torrielli A.: On the Hopf algebra structure of the AdS/CFT S-matrix. Phys. Rev. D 74, 066008 (2006) arXiv:hep-th/0608038 ADSCrossRefGoogle Scholar
  8. 8.
    Beisert, N.: The S-matrix of AdS/CFT and Yangian symmetry. PoS SOLVAY: 002 (2006). arXiv:0704.0400 [nlin.SI]
  9. 9.
    de Leeuw, M.: The S-matrix of the \({AdS_5 \times S^5}\) superstring. arXiv:1007.4931[hep-th].
  10. 10.
    Ahn C., Nepomechie R.I: Review of AdS/CFT integrability, chapter III. 2: exact world-sheet S-matrix. Lett. Math. Phys. 99, 209 (2012) arXiv:1012.3991 [hep-th]ADSCrossRefMATHGoogle Scholar
  11. 11.
    Torrielli A.: Yangians, S-matrices and AdS/CFT. J. Phys. A 44, 263001 (2011) arXiv:1104.2474 [hep-th]ADSCrossRefMATHGoogle Scholar
  12. 12.
    Gomez C., Hernandez R.: The magnon kinematics of the AdS/CFT correspondence. JHEP 0611, 021 (2006) arXiv:hep-th/0608029 [hep-th]ADSCrossRefGoogle Scholar
  13. 13.
    Rej A., Serban D., Staudacher M.: Planar \({\mathcal {N}=4}\) gauge theory and the Hubbard model. JHEP 0603, 018 (2006) arXiv:hep-th/0512077 [hep-th]ADSCrossRefMATHGoogle Scholar
  14. 14.
    Shiroishi M., Wadati M.: Yang–Baxter equation for the R-matrix of the one-dimensional Hubbard model. J. Phys. Soc. Jpn 64, 57 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Korepanov, I.G.: Vacuum curves, classical integrable systems in discrete space-time and statistical physics. Zap. Nauchn. Semin. 235, 272 Talk made at the Lobachevsky Semester in Euler Int. Math. Inst., St. Petersburg, Nov 1992. (1996)Google Scholar
  16. 16.
    Korepanov I.G.: Tetrahedral Zamolodchikov algebras corresponding to Baxter’s L-operators. Commun. Math. Phys. 154, 85 (1993)ADSCrossRefMATHGoogle Scholar
  17. 17.
    Zamolodchikov A.B.: Tetrahedra equations and integrable systems in three dimensional space. Zh. Eksp. Teor. Fiz. 79, 641 (1980)Google Scholar
  18. 18.
    Arutyunov G., Frolov S., Zamaklar M.: The Zamolodchikov–Faddeev algebra for \({AdS_5 \times S^5}\) superstring. JHEP 0704, 002 (2007) arXiv:0612229 [hep-th]ADSCrossRefGoogle Scholar
  19. 19.
    Shiroishi M., Wadati M.: Tetrahedral Zamolodchikov algebra related to the six-vertex free-fermion model and a new solution of the Yang–Baxter equation. J. Phys. Soc. Jpn 64, 4598 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Bazhanov V.V., Stroganov Y.G.: Hidden symmetry of free fermion model. 1. Triangle equations and symmetric parametrization. Theor. Math. Phys. 62, 253 (1985)CrossRefGoogle Scholar
  21. 21.
    Gomez C., Ruiz-Altaba M., Sierra G.: Quantum Groups in Two-Dimensional Physics. Cambridge Monographs on Mathematical Physics, Cambridge (1996)CrossRefMATHGoogle Scholar
  22. 22.
    Reshetikhin N.: Multiparameter quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys. 20, 331 (1990)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Beisert N., Galleas W., Matsumoto T.: A quantum affine algebra for the deformed Hubbard chain. J. Phys. A 45, 365206 (2012) arXiv:math-ph/1102.5700 [math-ph]CrossRefMATHGoogle Scholar
  24. 24.
    Horibe M., Shigemoto K.: On solutions of tetrahedron equations based on Korepanov mechanism. Prog. Theor. Phys. 93, 871 (1995) arXiv:hep-th/9410171 [hep-th]ADSCrossRefGoogle Scholar
  25. 25.
    Janik R.A.: The \({AdS_5 \times S^5}\) superstring worldsheet S-matrix and crossing symmetry. Phys. Rev. D 73, 086006 (2006) arXiv:hep-th/0603038 [hep-th]ADSCrossRefGoogle Scholar
  26. 26.
    Umeno Y., Shiroishi M., Wadati M.: Fermionic R-operator and integrability of the one-dimensional Hubbard model. J. Phys. Soc. Jpn 67, 2242 (1998)ADSCrossRefMATHGoogle Scholar
  27. 27.
    Beisert N., Koroteev P.: Quantum deformations of the one-dimensional Hubbard model. J. Phys. A 41, 255204 (2008) arXiv:0802.0777 [hep-th]ADSCrossRefMATHGoogle Scholar
  28. 28.
    Beisert N., Staudacher M.: Long-range psu(2,2|4) Bethe ansätze for gauge theory and strings. Nucl. Phys. B 727, 1 (2005) arXiv:hep-th/0504190 [hep-th]ADSCrossRefMATHGoogle Scholar
  29. 29.
    Gromov, N., Kazakov, V., Vieira, P.: Integrability for the full spectrum of planar AdS/CFT. arXiv:0901.3753
  30. 30.
    Gromov N., Kazakov V., Vieira P.: Exact spectrum of anomalous dimensions of planar \({\mathcal{N}=4}\) supersymmetric Yang–Mills theory. Phys. Rev. Lett. 103, 131601 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Bombardelli D., Fioravanti D., Tateo R.: Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal. J. Phys. A 42, 375401 (2009) arXiv:0902.3930 [hep-th]ADSCrossRefMATHGoogle Scholar
  32. 32.
    Gromov, N., Kazakov, V., Kozak, A., Vieira, P.: Integrability for the full spectrum of planar AdS/CFT II. arXiv:0902.4458 [hep-th]
  33. 33.
    Gromov N., Kazakov V., Kozak A., Vieira P.: Exact spectrum of anomalous dimensions of planar \({N = 4}\) supersymmetric Yang–Mills theory: TBA and excited states. Lett. Math. Phys. 91, 265 (2010)ADSCrossRefMATHGoogle Scholar
  34. 34.
    Arutyunov G., Frolov S.: Thermodynamic Bethe ansatz for the \({{\rm AdS_5 \times S^5}}\) mirror model. JHEP 0905, 068 (2009) arXiv:0903.0141 [hep-th]ADSCrossRefGoogle Scholar
  35. 35.
    Gromov N., Kazakov V., Leurent S., Volin D.: Solving the AdS/CFT Y-system. JHEP 1207, 023 (2012) arXiv:1110.0562 [hep-th]ADSCrossRefGoogle Scholar
  36. 36.
    Balog J., Hegedus A.: Hybrid-NLIE for the AdS/CFT spectral problem. JHEP 1208, 022 (2012) arXiv:1202.3244 [hep-th]ADSCrossRefGoogle Scholar
  37. 37.
    Suzuki R.: Hybrid NLIE for the mirror \({AdS_5 \times S^5}\). J. Phys. A 44, 235401 (2011) arXiv:1101.5165 [hep-th]ADSCrossRefMATHGoogle Scholar
  38. 38.
    Gromov N., Kazakov V., Tsuboi Z.: \({PSU(2,2|4)}\) character of quasiclassical AdS/CFT. JHEP 1007, 097 (2010) arXiv:1002.3981 [hep-th]ADSCrossRefMATHGoogle Scholar
  39. 39.
    Bazhanov V.V., Sergeev S.M.: Zamolodchikov’s tetrahedron equation and hidden structure of quantum groups. J. Phys. A 39, 3295 (2006) arXiv:hep-th/0509181 ADSCrossRefMATHGoogle Scholar
  40. 40.
    Kulish P.P., Sklyanin E.K.: Solutions of the Yang–Baxter equation. J. Soviet Math. 19, 1596 (1982)CrossRefMATHGoogle Scholar
  41. 41.
    Shastry B.: Decorated star-triangle relations and exact integrability of the one-dimensional Hubbard model. J. Stat. Phys. 50, 57 (1986)ADSCrossRefMATHGoogle Scholar
  42. 42.
    Akutsu Y., Olmedilla E., Wadati M.: Yang–Baxter relations for spin models and fermion models. JPSJ 56, 2298 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Vladimir Mitev
    • 1
    • 2
  • Matthias Staudacher
    • 1
    • 3
  • Zengo Tsuboi
    • 1
    • 4
  1. 1.Institut für Mathematik und Institut für PhysikHumboldt-Universität zu Berlin IRIS HausBerlinGermany
  2. 2.PRISMA Cluster of Excellence, Institut für Physik, WA THEPJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany
  4. 4.Laboratoire de Physique Théorique (LPT ENS), Département de physique de l’ENS, École normale supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRSParisFrance

Personalised recommendations