Abstract
We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang–Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O(N)-invariant nonlinear \({\sigma}\)-models.
This is a preview of subscription content, access via your institution.
References
Abdalla E., Abdalla C.B., Rothe K.D.: Non-Perturbative Methods in 2-Dimensional Quantum Field Theory. World Scientific, Singapore (2001)
Alazzawi, S.: Deformations of Quantum Field Theories and the Construction of Interacting Models. Ph.D. Thesis, University of Vienna. arXiv:1503.00897 (2014)
Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)
Babujian, H.M., Foerster, A., Karowski, M.: SU(N) and O(N) off-shell nested Bethe ansatz and form factors. Low Dimens. Phys. Gauge Princ. 46 (2011). doi:10.1142/9789814440349_0005
Babujian, H.M., Foerster, A., Karowski, M. et al.: The form factor program: a review and new results—the nested SU(N) off-shell Bethe ansatz. SIGMA 2, 082 (2006)
Baumgärtel H., Wollenberg M.: Causal Nets of Operator Algebras. Akademie Verlag, Berlin (1992)
Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, Cambridge (1982)
Benfatto G., Falco P., Mastropietro V.: Functional integral construction of the thirring model: axioms verification and massless limit. Commun. Math. Phys. 273, 67–118 (2007)
Benfatto G., Falco P., Mastropietro V.: Massless Sine-Gordon and massive Thirring models: proof of the Coleman’s equivalence. Commun. Math. Phys. 285, 713–762 (2009)
Bischoff M., Tanimoto Y.: Integrable QFT and Longo–Witten endomorphisms. Ann. H. Poincaré 16(2), 569–608 (2015)
Bisognano J.J., Wichmann E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975)
Bisognano J.J., Wichmann E.H.: On the duality condition for quantum fields. J. Math. Phys. 17(3), 303–321 (1976)
Borchers H.-J., Buchholz D., Schroer B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219(1), 125–140 (2001)
Borchers H.J.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992)
Bostelmann H., Cadamuro D.: An operator expansion for integrable quantum field theories. J. Phys. A: Math. Theor. 46(9), 095401 (2013)
Bostelmann H., Cadamuro D.: Characterization of local observables in integrable quantum field theories. Commun. Math. Phys. 337(3), 1199–1240 (2015)
Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1987)
Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002)
Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88, 223–250 (1990)
Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures II: applications to quantum field theory. Commun. Math. Phys. 129(1), 115–138 (1990)
Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. H. Poincaré 5, 1065–1080 (2004)
Cadamuro D., Tanimoto Y.: Wedge-local fields in integrable models with bound states. Commun. Math. Phys. 340(2), 661–697 (2015)
Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)
Epstein H.: Generalization of the “Edge-of-the-Wedge” Theorem. J. Math. Phys. 1(6), 524–531 (1960)
Epstein, H.: Some analytic properties of scattering amplitudes in quantum field theory. In: Axiomatic Field Theory, vol. 1, p. 1. (1966)
Fröhlich J.: Quantized “Sine-Gordon” equation with a non-vanishing mass term in two space-time dimensions. Phys. Rev. Lett. 34(13), 833–836 (1975)
Glimm J., Jaffe A.: Quantum Physics. Springer, Berlin (1981)
Grosse, H., Wulkenhaar, R.: Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity. arXiv:1406.7755 (2014)
Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1996)
Hollands, S., Lechner, G.: SO(d,1)-invariant Yang–Baxter operators and the dS/CFT-correspondence. arXiv:1603.05987 (2016)
Iagolnitzer D.: Scattering in Quantum Field Theories: The Axiomatic and Constructive Approaches. Princeton University Press, Princeton (1993)
Jarchow H.: Locally Convex Spaces. Teubner, Stuttgart (1981)
Jimbo M.: Quantum R-matrix for the generalized Toda system. Commun. Math. Phys. 102(4), 537–547 (1986)
Kauffman L.: Knots and Physics. World Scientific, Singapore (1993)
Ketov S.V.: Quantum Non-Linear Sigma-Models. Springer, Berlin (2000)
Kosaki H.: On the continuity of the map \({\varphi\rightarrow|\varphi|}\) from the predual of a W*-algebra. J. Funct. Anal. 59(1), 123–131 (1984)
Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64(2), 137–154 (2003)
Lechner, G.: On the construction of quantum field theories with factorizing S-matrices. Ph.D Thesis, University of Göttingen. arXiv: math-ph/0611050 (2006)
Lechner G.: Towards the construction of quantum field theories from a factorizing S-matrix. Prog. Math. 251, 175–198 (2007)
Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)
Lechner G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312, 265–302 (2012)
Lechner G.: Algebraic Constructive Quantum Field Theory: Integrable Models and Deformation Techniques, pp. 397–449. Springer, Berlin (2015)
Lechner G., Sanders K.: Modular nuclearity: a generally covariant perspective. Axioms 5(1), 5 (2016)
Lechner G., Schützenhofer C.: Towards an operator-algebraic construction of integrable global gauge theories. Ann. H. Poincaré 15, 645–678 (2014)
Liguori A., Mintchev M.: Fock representations of quantum fields with generalized statistics. Commun. Math. Phys. 169, 635–652 (1995)
Liguori A., Mintchev M.: Fock spaces with generalized statistics. Lett. Math. Phys. 33, 283–295 (1995)
Mund J.: The Bisognano–Wichmann theorem for massive theories. Ann. H. Poincaré 2, 907–926 (2001)
Pietsch A.: Nuclear locally convex spaces. Cambridge University Press, Cambridge (1972)
Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness. Academic Press, Cambridge (1975)
Reed M., Simon B.: Methods of modern mathematical physics III: scattering theory. Academic Press, Academic Press (1980)
Schroer B.: Modular localization and the bootstrap-formfactor program. Nucl. Phys. B 499(3), 547–568 (1997)
Schroer B., Wiesbrock H.-W.: Modular constructions of quantum field theories with interactions. Rev. Math. Phys. 12(02), 301–326 (2000)
Schützenhofer, C.: Multi-particle S-matrix models in \({1+1}\)-dimensions and associated Quantum Field theories. Diploma thesis, University of Vienna (2011)
Simon B.: Trace Ideals and Their Applications. American Mathematical Society, Providence, RI (2005)
Smirnov F.A.: Form-factors in completely integrable models of quantum field theory. Adv. Ser. Math. Phys. 14, 1–208 (1992)
Stein E.M., Weiss G.L.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)
Streater R.F., Wightman A.S.: PCT, spin and statistics, and all that. Princeton University Press, Princeton (1964)
Tanimoto Y.: Bound state operators and wedge-locality in integrable quantum field theories. SIGMA 12, 100 (2016)
Zamolodchikov A.B., Zamolodchikov A.B.: Relativistic factorized S-matrix in two-dimensions having O(N) isotopic symmetry. Nucl. Phys. B 133, 525 (1978)
Zamolodchikov A.B., Zamolodchikov A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys. 120(2), 253–291 (1979)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Rights and permissions
About this article
Cite this article
Alazzawi, S., Lechner, G. Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories. Commun. Math. Phys. 354, 913–956 (2017). https://doi.org/10.1007/s00220-017-2891-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2891-0