Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories
- 72 Downloads
- 2 Citations
Abstract
We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang–Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O(N)-invariant nonlinear \({\sigma}\)-models.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Abdalla E., Abdalla C.B., Rothe K.D.: Non-Perturbative Methods in 2-Dimensional Quantum Field Theory. World Scientific, Singapore (2001)MATHGoogle Scholar
- 2.Alazzawi, S.: Deformations of Quantum Field Theories and the Construction of Interacting Models. Ph.D. Thesis, University of Vienna. arXiv:1503.00897 (2014)
- 3.Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)MATHGoogle Scholar
- 4.Babujian, H.M., Foerster, A., Karowski, M.: SU(N) and O(N) off-shell nested Bethe ansatz and form factors. Low Dimens. Phys. Gauge Princ. 46 (2011). doi: 10.1142/9789814440349_0005
- 5.Babujian, H.M., Foerster, A., Karowski, M. et al.: The form factor program: a review and new results—the nested SU(N) off-shell Bethe ansatz. SIGMA 2, 082 (2006)Google Scholar
- 6.Baumgärtel H., Wollenberg M.: Causal Nets of Operator Algebras. Akademie Verlag, Berlin (1992)MATHGoogle Scholar
- 7.Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, Cambridge (1982)MATHGoogle Scholar
- 8.Benfatto G., Falco P., Mastropietro V.: Functional integral construction of the thirring model: axioms verification and massless limit. Commun. Math. Phys. 273, 67–118 (2007)ADSMATHGoogle Scholar
- 9.Benfatto G., Falco P., Mastropietro V.: Massless Sine-Gordon and massive Thirring models: proof of the Coleman’s equivalence. Commun. Math. Phys. 285, 713–762 (2009)ADSMATHGoogle Scholar
- 10.Bischoff M., Tanimoto Y.: Integrable QFT and Longo–Witten endomorphisms. Ann. H. Poincaré 16(2), 569–608 (2015)MATHGoogle Scholar
- 11.Bisognano J.J., Wichmann E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975)ADSMATHGoogle Scholar
- 12.Bisognano J.J., Wichmann E.H.: On the duality condition for quantum fields. J. Math. Phys. 17(3), 303–321 (1976)ADSGoogle Scholar
- 13.Borchers H.-J., Buchholz D., Schroer B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219(1), 125–140 (2001)ADSMATHGoogle Scholar
- 14.Borchers H.J.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992)ADSMATHGoogle Scholar
- 15.Bostelmann H., Cadamuro D.: An operator expansion for integrable quantum field theories. J. Phys. A: Math. Theor. 46(9), 095401 (2013)ADSMATHGoogle Scholar
- 16.Bostelmann H., Cadamuro D.: Characterization of local observables in integrable quantum field theories. Commun. Math. Phys. 337(3), 1199–1240 (2015)ADSMATHGoogle Scholar
- 17.Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1987)MATHGoogle Scholar
- 18.Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002)MATHGoogle Scholar
- 19.Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88, 223–250 (1990)MATHGoogle Scholar
- 20.Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures II: applications to quantum field theory. Commun. Math. Phys. 129(1), 115–138 (1990)ADSMATHGoogle Scholar
- 21.Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. H. Poincaré 5, 1065–1080 (2004)MATHGoogle Scholar
- 22.Cadamuro D., Tanimoto Y.: Wedge-local fields in integrable models with bound states. Commun. Math. Phys. 340(2), 661–697 (2015)ADSMATHGoogle Scholar
- 23.Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)ADSMATHGoogle Scholar
- 24.Epstein H.: Generalization of the “Edge-of-the-Wedge” Theorem. J. Math. Phys. 1(6), 524–531 (1960)ADSMATHGoogle Scholar
- 25.Epstein, H.: Some analytic properties of scattering amplitudes in quantum field theory. In: Axiomatic Field Theory, vol. 1, p. 1. (1966)Google Scholar
- 26.Fröhlich J.: Quantized “Sine-Gordon” equation with a non-vanishing mass term in two space-time dimensions. Phys. Rev. Lett. 34(13), 833–836 (1975)ADSGoogle Scholar
- 27.Glimm J., Jaffe A.: Quantum Physics. Springer, Berlin (1981)MATHGoogle Scholar
- 28.Grosse, H., Wulkenhaar, R.: Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity. arXiv:1406.7755 (2014)
- 29.Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1996)MATHGoogle Scholar
- 30.Hollands, S., Lechner, G.: SO(d,1)-invariant Yang–Baxter operators and the dS/CFT-correspondence. arXiv:1603.05987 (2016)
- 31.Iagolnitzer D.: Scattering in Quantum Field Theories: The Axiomatic and Constructive Approaches. Princeton University Press, Princeton (1993)MATHGoogle Scholar
- 32.Jarchow H.: Locally Convex Spaces. Teubner, Stuttgart (1981)MATHGoogle Scholar
- 33.Jimbo M.: Quantum R-matrix for the generalized Toda system. Commun. Math. Phys. 102(4), 537–547 (1986)ADSMATHGoogle Scholar
- 34.Kauffman L.: Knots and Physics. World Scientific, Singapore (1993)MATHGoogle Scholar
- 35.Ketov S.V.: Quantum Non-Linear Sigma-Models. Springer, Berlin (2000)MATHGoogle Scholar
- 36.Kosaki H.: On the continuity of the map \({\varphi\rightarrow|\varphi|}\) from the predual of a W*-algebra. J. Funct. Anal. 59(1), 123–131 (1984)Google Scholar
- 37.Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64(2), 137–154 (2003)MATHGoogle Scholar
- 38.Lechner, G.: On the construction of quantum field theories with factorizing S-matrices. Ph.D Thesis, University of Göttingen. arXiv: math-ph/0611050 (2006)
- 39.Lechner G.: Towards the construction of quantum field theories from a factorizing S-matrix. Prog. Math. 251, 175–198 (2007)MATHGoogle Scholar
- 40.Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)ADSMATHGoogle Scholar
- 41.Lechner G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312, 265–302 (2012)ADSMATHGoogle Scholar
- 42.Lechner G.: Algebraic Constructive Quantum Field Theory: Integrable Models and Deformation Techniques, pp. 397–449. Springer, Berlin (2015)MATHGoogle Scholar
- 43.Lechner G., Sanders K.: Modular nuclearity: a generally covariant perspective. Axioms 5(1), 5 (2016)Google Scholar
- 44.Lechner G., Schützenhofer C.: Towards an operator-algebraic construction of integrable global gauge theories. Ann. H. Poincaré 15, 645–678 (2014)MATHGoogle Scholar
- 45.Liguori A., Mintchev M.: Fock representations of quantum fields with generalized statistics. Commun. Math. Phys. 169, 635–652 (1995)ADSMATHGoogle Scholar
- 46.Liguori A., Mintchev M.: Fock spaces with generalized statistics. Lett. Math. Phys. 33, 283–295 (1995)ADSMATHGoogle Scholar
- 47.Mund J.: The Bisognano–Wichmann theorem for massive theories. Ann. H. Poincaré 2, 907–926 (2001)MATHGoogle Scholar
- 48.Pietsch A.: Nuclear locally convex spaces. Cambridge University Press, Cambridge (1972)MATHGoogle Scholar
- 49.Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness. Academic Press, Cambridge (1975)MATHGoogle Scholar
- 50.Reed M., Simon B.: Methods of modern mathematical physics III: scattering theory. Academic Press, Academic Press (1980)MATHGoogle Scholar
- 51.Schroer B.: Modular localization and the bootstrap-formfactor program. Nucl. Phys. B 499(3), 547–568 (1997)ADSMATHGoogle Scholar
- 52.Schroer B., Wiesbrock H.-W.: Modular constructions of quantum field theories with interactions. Rev. Math. Phys. 12(02), 301–326 (2000)MATHGoogle Scholar
- 53.Schützenhofer, C.: Multi-particle S-matrix models in \({1+1}\)-dimensions and associated Quantum Field theories. Diploma thesis, University of Vienna (2011)Google Scholar
- 54.Simon B.: Trace Ideals and Their Applications. American Mathematical Society, Providence, RI (2005)MATHGoogle Scholar
- 55.Smirnov F.A.: Form-factors in completely integrable models of quantum field theory. Adv. Ser. Math. Phys. 14, 1–208 (1992)MATHGoogle Scholar
- 56.Stein E.M., Weiss G.L.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)MATHGoogle Scholar
- 57.Streater R.F., Wightman A.S.: PCT, spin and statistics, and all that. Princeton University Press, Princeton (1964)MATHGoogle Scholar
- 58.Tanimoto Y.: Bound state operators and wedge-locality in integrable quantum field theories. SIGMA 12, 100 (2016)ADSMATHGoogle Scholar
- 59.Zamolodchikov A.B., Zamolodchikov A.B.: Relativistic factorized S-matrix in two-dimensions having O(N) isotopic symmetry. Nucl. Phys. B 133, 525 (1978)ADSGoogle Scholar
- 60.Zamolodchikov A.B., Zamolodchikov A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys. 120(2), 253–291 (1979)ADSGoogle Scholar