Advertisement

Communications in Mathematical Physics

, Volume 353, Issue 2, pp 549–596 | Cite as

Hyperboloidal Evolution and Global Dynamics for the Focusing Cubic Wave Equation

  • Annegret Y. BurtscherEmail author
  • Roland Donninger
Article

Abstract

The focusing cubic wave equation in three spatial dimensions has the explicit solution \({\sqrt{2}/t}\). We study the stability of the blowup described by this solution as \({t \to 0}\) without symmetry restrictions on the data. Via the conformal invariance of the equation we obtain a companion result for the stability of slow decay in the framework of a hyperboloidal initial value formulation. More precisely, we identify a codimension-1 Lipschitz manifold of initial data leading to solutions that converge to Lorentz boosts of \({\sqrt{2}/t}\) as \({t\to\infty}\). These global solutions thus exhibit a slow nondispersive decay, in contrast to small data evolutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bizoń P., Chmaj T., Tabor Z.: On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity 17(6), 2187–2201 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bizoń P., Zenginoğlu A.: Universality of global dynamics for the cubic wave equation. Nonlinearity 22(10), 2473–2485 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: P. Exner (ed.) XVIth International Congress on Mathematical Physics. World Scientific, London, pp. 421–433 (2009). Related article available online at arXiv:0910.4957
  4. 4.
    Donninger R., Schörkhuber B.: Stable self-similar blow up for energy subcritical wave equations. Dyn. Partial Differ. Equ. 9(1), 63–87 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Donninger R., Schörkhuber B.: On blowup in supercritical wave equations. Commun. Math. Phys. 346(3), 907–943 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Donninger R., Zenginoğlu A.: Nondispersive decay for the cubic wave equation. Anal. PDE 7(2), 461–495 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eardley D.M., Smarr L.: Time functions in numerical relativity: marginally bound dust collapse. Phys. Rev. D (3) 19(8), 2239–2259 (1979)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Engel K.-J., Nagel R.: A short course in operator semigroups. Universitext, Springer, New York (2006)zbMATHGoogle Scholar
  9. 9.
    Friedrich H.: Cauchy problems for the conformal vacuum field equations in general relativitiy. Commun. Math. Phys. 91(4), 445–472 (1983)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Glassey R.T.: Blow-up theorems for nonlinear wave equations. Math. Z. 132, 183–203 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 editionGoogle Scholar
  12. 12.
    Klainerman S.: Global existence of small amplitude solutions to nonlinear Klein–Gordon equations in four space–time dimensions. Commun. Pure Appl. Math. 38(5), 631–641 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    LeFloch, P.G., Ma, Y.: The Hyperboloidal Foliation Method, Series in Applied and Computational Mathematics, 2. World Scientific Publishing Co. Pte. Ltd., Hackensack (2014)Google Scholar
  14. 14.
    LeFloch P.G., Ma Y.: The global nonlinear stability of Minkowski space for self-gravitating massive fields. Commun. Math. Phys. 346(2), 603–665 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Levine H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \({Pu_{tt} = -Au + \mathcal{F}(u)}\). Trans. Am. Math. Soc. 192, 1–21 (1974)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Lindblad H., Soffer A.: Scattering for the Klein–Gordon equation with quadratic and variable coefficient cubic nonlinearities. Trans. Am. Math. Soc. 367(12), 8861–8909 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Merle F., Zaag H.: Determination of the blow-up rate for a critical semilinear wave equation. Math. Ann. 331(2), 395–416 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Merle, F., Zaag, H.: On growth rate near the blowup surface for semilinear wave equations. Int. Math. Res. Not. 2005(19), 1127–1155 (2005)Google Scholar
  19. 19.
    Merle F., Zaag H.: On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Commun. Math. Phys. 333(3), 1529–1562 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Merle F., Zaag H.: Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions. Trans. Am. Math. Soc. 368(1), 27–87 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2011)Google Scholar
  22. 22.
    Pecher H.: Scattering for semilinear wave equations with small data in three space dimensions. Math. Z. 198(2), 277–289 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sterbenz J.: Dispersive decay for the 1D Klein–Gordon equation with variable coefficient nonlinearities. Trans. Am. Math. Soc. 368(3), 2081–2113 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, Q.: An intrinsic hyperboloid approach for Einstein Klein–Gordon equations. arXiv:1607.01466 (2016)
  25. 25.
    Zenginoğlu, A.: Hyperboloidal foliations and scri-fixing. Class. Quantum Gravity 25(14), 145002 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Mathematical Institute and Hausdorff Center for MathematicsUniversity of BonnBonnGermany
  2. 2.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations