Skip to main content
Log in

Uniqueness of the Representation in Homogeneous Isotropic LQC

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 30 July 2018

This article has been updated

Abstract

We show that the standard representation of homogeneous isotropic loop quantum cosmology (LQC) is the GNS-representation that corresponds to the unique state on the reduced quantum holonomy-flux *-algebra that is invariant under residual diffeomorphisms—both when the standard algebra is used as well as when one uses the extended algebra proposed by Fleischhack. More precisely, we find that in both situations the GNS-Hilbert spaces coincide, and that in the Fleischhack case the additional algebra elements are just mapped to zero operators. In order for the residual diffeomorphisms to have a well-defined action on the quantum algebra, we have let them act on the fiducial cell as well as on the dynamical variables, thereby recovering covariance. Consistency with Ashtekar and Campilgia in the Bianchi case is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 30 July 2018

    We correct some oversights contained in [1].

References

  1. Agullo I., Ashtekar A., Nelson W.: The pre-inflationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations. Class. Quant. Grav. 30, 085014. (2013) arXiv:1302.0254 (gr-qc)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ashtekar A., Barrau A.: Loop quantum cosmology: From pre-inflationary dynamics to observations. Class. Quantum Gravity 32, 234001. (2015) arXiv:1504.07559 (gr-qc)

    Article  ADS  MATH  Google Scholar 

  3. Ashtekar A., Bojowald M., Lewandowski J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268 (2003). arXiv:gr-qc/0304074

    Article  MathSciNet  Google Scholar 

  4. Ashtekar A., Campiglia M.: On the uniqueness of kinematics of loop quantum cosmology. Class. Quantum Grav. 29, 242001. (2012) arXiv:1209.4374 (gr-qc)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ashtekar A., Lewandowski J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53–R152. (2004) arXiv:gr-qc/0404018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ashtekar A., Singh P.: Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001. (2011) arXiv:1108.0893 (gr-qc)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ashtekar A., Wilson-Ewing E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D. 79, 083535. (2009) arXiv:0903.3397 (gr-qc)

    Article  ADS  MathSciNet  Google Scholar 

  8. Barbero G.J.F.: Real ashtekar variables for lorentzian signature space-times. Phys. Rev. D 51, 5507–5510. (1995) arXiv:gr-qc/9410014

    Article  ADS  MathSciNet  Google Scholar 

  9. Barrau A., Cailleteau T., Grain J., Mielczarek J.: Observational issues in loop quantum cosmology. Class. Quantum Gravity 31, 053001. (2014) arXiv:1309.6896 (gr-qc)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bojowald M., Calcagni G., Tsujikawa S.: Observational test of inflation in loop quantum cosmology. JCAP 1111, 046. (2011) arXiv:1107.1540 (gr-qc)

    Article  ADS  Google Scholar 

  11. Bojowald M., Kastrup H.A.: Quantum symmetry reduction for diffeomorphism invariant theories of connections. Class. Quantum Gravity 17, 3009. (2000) arXiv:gr-qc/9907042

    Article  ADS  MATH  Google Scholar 

  12. Dirac P.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)

    Google Scholar 

  13. Engle J.: Relating loop quantum cosmology to loop quantum gravity: Symmetric sectors and embeddings. Class. Quantum Gravity 24, 5777–5802. (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Engle J., Hanusch M.: Kinematical uniqueness of homogeneous isotropic LQC. Class. Quantum Gravity 34, 014001. (2017) arXiv:1604.08199 (gr-qc)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fleischhack, Ch.: Loop Quantization and symmetry: configuration spaces. arXiv:1010.0449 (math-ph)

  16. Holst S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D 53, 5966–5969. (1996) arXiv:gr-qc/9511026

    Article  ADS  MathSciNet  Google Scholar 

  17. Immirzi G.: Real and complex connections for canonical gravity. Class. Quantum Gravity 14, L177–L181. (1995) arXiv:gr-qc/9612030

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewandowski J., Okolow A., Sahlmann H., Thiemann T.: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Commun. Math. Phys. 267, 703–733. (2006) arXiv:gr-qc/0504147 (gr-qc)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Rovelli C.: Quantum Gravity. Cambridge UP, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Thiemann T.: Modern Canonical Quantum General Relativity. Cambridge UP, Cambridge (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Hanusch.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engle, J., Hanusch, M. & Thiemann, T. Uniqueness of the Representation in Homogeneous Isotropic LQC. Commun. Math. Phys. 354, 231–246 (2017). https://doi.org/10.1007/s00220-017-2881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2881-2

Navigation