Abstract
We present a stronger version of the Doherty–Parrilo–Spedalieri (DPS) hierarchy of approximations for the set of separable states. Unlike DPS, our hierarchy converges exactly at a finite number of rounds for any fixed input dimension. This yields an algorithm for separability testing that is singly exponential in dimension and polylogarithmic in accuracy. Our analysis makes use of tools from algebraic geometry, but our algorithm is elementary and differs from DPS only by one simple additional collection of constraints.
Similar content being viewed by others
References
Grötschel, M., Lovász, L. Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, second corrected edition edn., Springer (1993)
Liu, Y.K.: The complexity of the consistency and N-representability problems for quantum states. Ph.D. thesis, University of California, San Diego (2007) arXiv:0712.3041
Harrow, A.W., Montanaro, A.: Testing product states, quantum Merlin–Arthur games and tensor optimization. J. ACM 60(1), 3:1 (2013). arXiv:1001.0017
Beigi, S., Shor, P.W.: Approximating the set of separable states using the positive partial transpose test. J. Math. Phys. 51(4), 042202 (2010) arXiv:0902.1806
Gall, F.L., Nakagawa, S., Nishimura, H.: On QMA protocols with two short quantum proofs. Q. Inf. Comp. 12, 589 (2012) arXiv:1108.4306
Cubitt, T.S., Perez-Garcia, D., Wolf, M.: Undecidability of the spectral gap problem (2014). (In preparation)
Ito, T., Kobayashi, H., Watrous, J.: Quantum Interactive Proofs with Weak Error Bounds. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (2012), ITCS ’12, pp. 266–275. arXiv:1012.4427
Basu S., Pollack R., Roy M.F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43, 1002 (1996)
Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: A complete family of separability criteria (2003) arXiv:quant-ph/0308032
Barak, B., Steurer D.: Sum-of-squares proofs and the quest toward optimal algorithms (2014) arXiv:1404.5236
Nie J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137, 225 (2013) arXiv:1006.2418
Gharibian S.: Strong NP-hardness of the quantum separability problem. QIC 10, 343 (2010) arXiv:0810.4507
Aaronson, S., Impagliazzo, R., Moshkovitz, D.: AM with multiple merlins. In: Computational Complexity (CCC), 2014 IEEE 29th Conference on (2014), pp. 44–55. arXiv:1401.6848
Barak, B., Brandão, F.G.S.L., Harrow, A.W., Kelner, J., Steurer, D., Zhou, Y.: Hypercontractivity, sum-of-squares proofs, and their applications. In: Proceedings of the 44th symposium on Theory of Computing (2012), STOC ’12, pp. 307–326 arXiv:1205.4484
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?. In: Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on (IEEE, 1998), pp. 653–662
Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement (2003) arXiv:quant-ph/0303055
Blier, H., Tapp, A.: All languages in NP have very short quantum proofs. In: First International Conference on Quantum, Nano, and Micro Technologies. IEEE Computer Society, Los Alamitos, CA, USA, (2009), pp. 34–37 arXiv:0709.0738
Chiesa, A., Forbes, M.A.: Improved soundness for QMA with multiple provers. Chic. J. Theor. Comput. Sci. 2013(1) (2013) arXiv:1108.2098
Navascués M., Owari M., Plenio M.B.: Power of symmetric extensions for entanglement detection. Phys. Rev. A 80, 052306 (2009) arXiv:0906.2731
Aaronson, S., Beigi, S., Drucker, A., Fefferman, B., Shor, P.: The power of unentanglement. Annual IEEE Conference on Computational Complexity 0, 223 (2008) arXiv:0804.0802
Chen, J., Drucker, A.: Short multi-prover quantum proofs for SAT without entangled measurements (2010) arXiv:1011.0716
Brandão, F.G.S.L., Christandl, M., Yard, J.: Faithful squashed entanglement. Comm. Math. Phys. 306, 805 (2011) arXiv:1010.1750
Li, K., Winter, A.: Relative entropy and squashed entanglement. Comm. Math. Phys. 326, 63 (2014) arXiv:1210.3181
Brandão, F.G.S.L., Harrow, A.W.: Quantum de Finetti theorems under local measurements with applications. In: Proceedings of the 45th annual ACM Symposium on theory of computing. (2013), STOC ’13, pp. 861–870 arXiv:1210.6367
Shi, Y., Wu, X.: Epsilon-net method for optimizations over separable states. In: ICALP12. Springer, (2012), pp. 798–809 arXiv:1112.0808
Brandão, F.G., Harrow, A.W.: Estimating injective tensor norms using nets (2014). (In preparation)
Li, K., Smith, G.: Quantum de Finetti theorem measured with fully one-way LOCC norm (2014) arXiv:1408.6829
Putinar M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969 (1993)
Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. In: Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity. (2011), CCC ’11, pp. 157–166. arXiv:1012.5043
Klerk, E., Laurent, M., Parrilo, P.: On the equivalence of algebraic approaches to the minimization of forms on the simplex. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control, Lecture Notes in Control and Information Science, vol. 312, Springer Berlin Heidelberg, (2005), pp. 121–132.
Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In: In Proceedings of the CACSD Conference Taipei, Taiwan, (2004)
Löfberg J.: Pre- and post-processing sum-of-squares programs in practice. IEEE Trans. Autom. Control 54, 1007 (2009)
MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28). (2015)
Permenter, F., Parrilo, P.: Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone (2014) arXiv:1408.4685
Laurent, M.: Sums of squares, Moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds) Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications, vol. 149, Springer New York, (2009), pp. 157–270
Nie J., Ranestad K.: Algebraic degree of polynomial optimization. SIAM J. Optim. 20, 485 (2009). doi:10.1137/080716670
Trnovská M.: Strong duality conditions in semidefinite programming. J. Electr. Eng. 56, 1 (2005)
Cédric Josz, C.(INRIA), Henrion, Didier: (LAAS. Strong duality in Lasserre’s hierarchy for polynomial optimization. Optim. lett. 10, 3 (2016) arXiv:1405.7334
Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Mathematical Programming pp. 301 (1997)
Strelchuk S., Oppenheim J.: Hybrid zero-capacity channels. Phys. Rev. A 86, 022328 (2012) arXiv:1207.1084
Pereszlényi, A.: Multi-prover quantum Merlin–Arthur proof systems with small gap. (2012) arXiv:1205.2761
Cox, D., little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, second edition edn. Undergarduate texts in mathematics. Springer, (1996)
Harris, J.: Algebraic geometry: a first course. Graduate texts in mathematics. Springer, (1992)
Buchberger B.: Ein algorithmisches Kriterum für die Lösbarkeit eines algebraisches Gleichungssystems. Aequationes Mathematicae 4, 374 (1970)
Mayr, E.W., Ritscher, S.: Degree bounds for GröBner bases of low-dimensional polynomial ideals. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, (2010), ISSAC ’10, pp. 21–27.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. M. Wolf
Rights and permissions
About this article
Cite this article
Harrow, A.W., Natarajan, A. & Wu, X. An Improved Semidefinite Programming Hierarchy for Testing Entanglement. Commun. Math. Phys. 352, 881–904 (2017). https://doi.org/10.1007/s00220-017-2859-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2859-0