Abstract
We introduce a notion of universal preparability for a state of a system, more precisely: for a normal state on a von Neumann algebra. It describes a situation where from an arbitrary initial state it is possible to prepare a target state with arbitrary precision by a repeated interaction with a sequence of copies of another system. For \({\mathcal{B}(\mathcal{H})}\) we give criteria sufficient to ensure that all normal states are universally preparable which can be verified for a class of non-commutative birth and death processes realized, in particular, by the interaction of a micromaser with a stream of atoms. As a tool, the theory of tight sequences of states and of stationary states is further developed and we show that in the presence of stationary faithful normal states universal preparability of all normal states is equivalent to asymptotic completeness, a notion studied earlier in connection with the scattering theory of non-commutative Markov processes.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Barnett, S.: Introduction to Mathematical Control Theory. Oxford University Press, (1975)
Bücher D., Gärtner A., Kümmerer B., Reußwig W., Schwieger K., Sissouno N.: Ergodic properties of quantum birth and death chains. Preprint, arXiv:1306.3776 (2013)
Burgarth D., Giovannetti V.: Full control by locally induced relaxation. Phys. Rev. Lett. 99, 100501 (2007)
Coron J.M., Control and Nonlinearity. AMS Mathematical Surveys and Monographs, vol. 136 (2007)
Davies E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)
Davidson K.R., Marcoux L.W., Radjavi H.: Transitive spaces of operators. Integral Equ. Oper. Theory 61(2), 187–210 (2008)
Fagnola F., Rebolledo R.: On the existence of stationary states for quantum dynamical semigroups. J. Math. Phys. 42(3), 1296–1308 (2001)
Fagnola F., Rebolledo R.: Subharmonic projections for a quantum Markov semigroup. J. Math. Phys. 43(2), 1074–1082 (2002)
Gärtner A., Kümmerer B.: A coherent approach to recurrence and transience for quantum Markov operators. Preprint, arXiv:1211.6876 (2012)
Gohm R.: Noncommutative Stationary Processes, vol. 1839. Springer LNM, Berlin (2004)
Gohm R.: Kümmerer-Maassen scattering theory and entanglement. In: Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol. 7(2), pp. 271–280. World Scientific, Singapore (2004)
Gohm R.: Noncommutative Markov chains and multi-analytic operators. J. Math. Anal. Appl. 364(1), 275–288 (2009)
Gohm, R.: Weak Markov processes as linear systems. In: Mathematics of Control, Signals, and Systems (MCSS), pp. 375–413 (2015)
Gohm R., Kümmerer B., Lang T.: Noncommutative symbolic coding. Ergod. Theory Dyn. Syst. 26, 1521–1548 (2006)
Groh U., Kümmerer B.: Bibounded operators on W*-algebras. Math. Scand. 50, 269–285 (1982)
Haag, F.: Asymptotisches Verhalten von Quanten–Markov–Halbgruppen und Quanten–Markov–Prozessen, Dissertation, Darmstadt (2006)
Haroche S., Raimond J.M.: Exploring the Quantum. Atoms, Cavities and Photons. Oxford University Press, Oxford (2006)
Krengel, U.: Ergodic Theorems. De Gruyter, Berlin (1985)
Kümmerer B.: Markov dilations on W*-algebras. J. Funct. Anal. 63, 139–177 (1985)
Kümmerer B.: Quantum Markov processes and applications in physics. In: Barndorff-Nielsen, O., Franz, U., Gohm, R., Kümmerer, B., Thorbjørnsen, S. (eds.) Quantum Independent Increment Processes II, Springer Lecture Notes in Mathematics, vol. 1866, pp. 259–330 (2006)
Kümmerer, B.: Asymptotic behaviour of quantum Markov processes. in: Infinite Dimensional Harmonic Analysis IV, pp. 168–183 (2008)
Kümmerer B., Maassen H.: A scattering theory for Markov chains. Inf. Dimens. Anal. Quantum Prob. Rel. Topics 3, 161–176 (2000)
Kümmerer B., Nagel R.: Mean ergodic semigroups on \({W^*}\)-algebras. Acta Sci. Math. 41, 151–159 (1979)
Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras. Academic Press, London (1986)
Luczak A.: Ergodic projection for quantum dynamical semigroups. Int. J. Theor. Phys. 34(8), 1533–1540 (1995)
Meystre P., Sargent M.: Elements of Quantum Optics. Springer, Berlin (1991)
Rouchon P.: Models and Feedback Stabilization of Open Quantum Systems. Extended version of paper for ICM Seoul (v3). arXiv:1407.7810 (2014)
Sayrin C., Dotsenko I., Zhou X., Peaudecerf B., Rybarczyk T., Gleyzes S., Rouchon P., Mirrahimi M., Amini H., Brune M., Raimond J.M., Haroche S.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011)
Shiryaev, A.N.: Probability. Springer, Berlin (1996)
Størmer E.: Positive Linear Maps of Operator Algebras. Springer, Berlin (2013)
Takesaki M.: Conditional expectations in von Neumann algebras. J. Funct. Anal. 9, 306–321 (1972)
Takesaki, M.: Theory of Operator Algebras I. Springer, 2nd printing of the First Edition (1979)
Wellens T., Buchleitner A., Kümmerer B., Maassen H.: Quantum state preparation via asymptotic completeness. Phys. Rev. Lett. 85, 3361–3364 (2000)
Wiskandt J.: Asymptotische Vollständigkeit und Beobachtbarkeit von Quanten–Markov–Prozessen. Diplomarbeit, Darmstadt (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. M. Wolf
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gohm, R., Haag, F. & Kümmerer, B. Universal Preparability of States and Asymptotic Completeness. Commun. Math. Phys. 352, 59–94 (2017). https://doi.org/10.1007/s00220-017-2851-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-017-2851-8