Abstract
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters (q, t) and polynomial in a further two parameters (u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
This is a preview of subscription content, access via your institution.
References
Arita C., Ayyer A., Mallick K., Prolhac S.: Generalized matrix Ansatz in the multispecies exclusion process—partially asymmetric case. J. Phys. A Math. Theor. 45, 195001 (2012)
Bazhanov V.V., Kashaev R.M., Mangazeev V.V., Stroganov Yu.G.: \({(Z_N\times)^{n-1}}\) generalization of the chiral Potts model. Commun. Math. Phys. 138(2), 393–408 (1991)
Borodin, A.: Private communication.
Borodin, A.: On a family of symmetric rational functions. arXiv:1410.0976
Borodin A., Corwin I.: Macdonald processes. Prob. Theory Relat. Fields 158, 225–400 (2014)
Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. arXiv:1601.05770
Bosnjak G., Mangazeev V.V.: Construction of R-matrices for symmetric tensor representations related to \({U_q(\widehat{sl_n})}\). J. Phys. A Math. Theor. 49, 495204 (2016)
Cantini, L., de Gier, J., Wheeler, M.: Matrix product formula for Macdonald polynomials. J. Phys. A Math. Theor. 48, 384001 (2015). arXiv:1505.00287
Cherednik I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. 141, 191–216 (1995)
Cherednik I.: Nonsymmetric Macdonald polynomials. Int. Math. Res. Not. 10, 483–515 (1995)
Corwin I., Petrov L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651–700 (2016)
Crampe, N., Ragoucy, E., Vanicat, M.: Integrable approach to simple exclusion processes with boundaries. Review and progress. J. Stat. Mech. P11032 (2014). arXiv:1408.5357
Drinfeld, V.G.: Quantum groups. In: Proceedings of ICM-86 (Berkeley, USA), vol. 1. American Mathematical Society, Providence, pp. 798–820 (1987)
Drinfeld, V.G.: Quasi-Hopf Algebra. Algebra and Analysis. Peterbg. Math. J. 1(6), 1419–1457 (1990)
Faddeev, L.D.: Quantum completely integrable models in field theory. In: Problems of Quantum Field Theory, R2-12462, Dubna, pp. 249–299 (1979)
Faddeev, L.D.: Quantum completely integrable models in field theory. In: Contemporary Mathematical Physics, vol. IC, pp. 107–155 (1980)
Foda O., Wheeler M.: Colour-independent partition functions in coloured vertex models. Nucl. Phys. B 871, 330–361 (2013)
Haiman M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14, 941–1006 (2001)
Hayashi T.: Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127, 129–144 (1990)
Inoue, R., Kuniba, A., Okado, M.: A quantization of box-ball systems. Rev. Math. Phys. 16, 1227–1258 (2004). arXiv:nlin/0404047
Jimbo M.: A q-analogue of \({U(gl(N+1))}\), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)
Jimbo M.: Quantum R-matrix for the generalized Toda system. Commun. Math. Phys. 102, 537–547 (1986)
Kasatani, M., Takeyama, Y.: The quantum Knizhnik–Zamolodchikov equation and non-symmetric Macdonald polynomials. Funkcialaj ekvacioj. Ser. Internacia 50, 491–509 (2007). arXiv:math/0608773
Korff C.: Cylindric versions of specialised Macdonald polynomials and a deformed Verlinde algebra. Commun. Math. Phys. 318, 173–246 (2013)
Kulish P.P., Mudrov A.I.: On twisting solutions to the Yang–Baxter equation. Czechoslov. J. Phys. 50(1), 115–122 (2000)
Kuniba A., Mangazeev V.V., Maruyama S., Okado M.: Stochastic R matrix for \({U_q(A^{(1)}_n)}\). Nucl. Phys. B 913, 248–277 (2016)
Macdonald, I.: A new class of symmetric functions. Publ. I.R.M.A. Strasbourg, Actes \({20^{\rm e}}\) Séminaire Lotharingien 131–171 (1988)
Macdonald I.: Symmetric functions and Hall polynomials, 2nd edn. Clarendon Press, Oxford (1995)
Mangazeev V.: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014)
Mangazeev V.: Q-operators in the six-vertex model. Nucl. Phys. B 886, 166–184 (2014)
Opdam E.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)
Palev T.D.: A Holstein–Primakoff and a Dyson realization for the quantum algebra \({U_q(sl(n+1))}\). J. Phys. A Math. Gen. 31(22), 5145 (1998)
Povolotsky, A.M.: On the integrability of zero-range chipping models with factorized steady states, J. Phys. A Math. Theor. 46, 465205 (2013)
Prolhac, S., Evans, M.R., Mallick, K.: Matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A Math. Theor. 42, 165004 (2009). arXiv:0812.3293
Reshetikhin Yu N.: Multiparameter quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys 20, 331–335 (1990)
Sasamoto T., Wadati M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A Math. Gen. 31, 6057–6071 (1998)
Takeyama, Y.: A deformation of affine Hecke algebra and integrable stochastic particle system. J. Phys. A Math. Theor. 47, 465203 (2014)
Takeyama, Y.: Algebraic construction of multi-species q-Boson system. arXiv:1507.02033
Tsuboi, Z.: Asymptotic representations and q-oscillator solutions of the graded Yang–Baxter equation related to Baxter Q-operators. Nucl. Phys. B 886, 1–30 (2014). arXiv:1205.1471
Wheeler M., Zinn-Justin P.: Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons. Adv. Math. 299, 543–600 (2016)
Zamolodchikov A.B., Zamolodchikov AI.B.: Two-dimensional factorizable S-matrices as exact solutions of some quantum field theory models. Ann. Phys. 120, 253–291 (1979)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Borodin
Rights and permissions
About this article
Cite this article
Garbali, A., de Gier, J. & Wheeler, M. A New Generalisation of Macdonald Polynomials. Commun. Math. Phys. 352, 773–804 (2017). https://doi.org/10.1007/s00220-016-2818-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-016-2818-1