Abstract
The eigenvalue distribution of the sum of two large Hermitian matrices, when one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given by the free convolution of their spectral distributions. We prove that this convergence also holds locally in the bulk of the spectrum, down to the optimal scales larger than the eigenvalue spacing. The corresponding eigenvectors are fully delocalized. Similar results hold for the sum of two real symmetric matrices, when one is conjugated by Haar orthogonal matrix.
References
Bao Z.G., Erdős L., Schnelli K.: Local stability of free additive convolution. J. Funct. Anal. 271(3), 672–719 (2016)
Bao, Z.G., Erdős, L., Schnelli, K.: On the local single ring theorem (in preparation)
Belinschi S.: A note on regularity for free convolutions. Ann. Inst. Henri Poincaré Probab. Stat. 42(5), 635–648 (2006)
Belinschi S.: The Lebesgue decomposition of the free additive convolution of two probability distributions. Probab. Theory Related Fields 142(1–2), 125–150 (2008)
Belinschi S.: \({\mathrm{L}^{\infty}}\)-boundedness of density for free additive convolutions. Rev. Roumaine Math. Pures Appl. 59(2), 173–184 (2014)
Belinschi S., Bercovici H.: A new approach to subordination results in free probability. J. Anal. Math. 101(1), 357–365 (2007)
Belinschi, S., Bercovici, H., Capitaine, M., Février, M.: Outliers in the spectrum of large deformed unitarily invariant models (2014). arXiv:1412.4916
Benaych-Georges, F.: Local single ring theorem (2015). arXiv:1501.07840
Bercovici H., Voiculescu D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42, 733–773 (1993)
Bercovici H., Voiculescu D.: Regularity questions for free convolution, nonselfadjoint operator algebras, operator theory, and related topics. Oper. Theory Adv. Appl. 104, 37–47 (1998)
Biane P.: Representations of symmetric groups and free probability. Adv. Math. 138(1), 126–181 (1998)
Bourgade P., Erdős L., Yau H.-T., Yin J.: Fixed energy universality for generalized Wigner matrices. Commun. Pure Appl. Math. 69(10), 1815–1881 (2016)
Capitaine M.: Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices. J. Theor. Probab. 26(3), 595–648 (2013)
Chatterjee S.: Concentration of Haar measures, with an application to random matrices. J. Funct. Anal. 245(2), 379–389 (2007)
Chistyakov G.P., Götze F.: The arithmetic of distributions in free probability theory. Central Eur. J. Math. 9, 997–1050 (2011)
Collins B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Notices 2003(17), 953–982 (2003)
Diaconis P., Shahshahani M.: The subgroup algorithm for generating uniform random variables. Probab. Eng. Inform. Sci. 1(01), 15–32 (1987)
Erdős L., Knowles A., Yau H.-T.: Averaging fluctuations in resolvents of random band matrices. Ann. Henri Poincaré 14, 1837–1926 (2013)
Erdős L., Yau H.-T., Yin J.: Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154(1–2), 341–407 (2012)
Erdős, L., Schnelli, K.: Universality for random matrix flows with time-dependent density (2015). arXiv:1504.00650
Erdős L., Yau H.-T.: Universality of local spectral statistics of random matrices. Bull. Am. Math. Soc. 49(3), 377–414 (2012)
Guionnet A., Krishnapur M., Zeitouni O.: The single ring theorem. Ann. Math. (2) 174, 1189–1217 (2011)
Hiai, F., Petz, D.: The semicircle law, free random variables and entropy. Math. Surveys Monogr. 77. Amer. Math. Soc., Providence (2000)
Kargin V.: On eigenvalues of the sum of two random projections. J. Stat. Phys. 149(2), 246–258 (2012)
Kargin V.: A concentration inequality and a local law for the sum of two random matrices. Prob. Theory Related Fields 154, 677–702 (2012)
Kargin V.: Subordination for the sum of two random matrices. Ann. Probab. 43(4), 2119–2150 (2015)
Landon, B., Yau, H.-T.: Convergence of local statistics of Dyson Brownian motion (2015). arXiv:1504.03605
Mezzadri F.: How to generate random matrices from the classical compact groups. Notices Am. Math. Soc. 54(5), 592–604 (2007)
Pastur L., Vasilchuk V.: On the law of addition of random matrices. Commun. Math. Phys. 214(2), 249–286 (2000)
Speicher R.: Free convolution and the random sum of matrices. Publ. Res. Inst. Math. Sci. 29(5), 731–744 (1993)
Voiculescu D.: Limit laws for random matrices and free products. Invent. Math. 104(1), 201–220 (1991)
Voiculescu, D., Dykema, K.J., Nica, A.: Free random variables. CRM Monogr. Ser. Amer. Math. Soc., Providence (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H.-T. Yau
Z. Bao, L. Erdős and K.Schnelli were supported by ERC Advanced Grant RANMAT No. 338804.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bao, Z., Erdős, L. & Schnelli, K. Local Law of Addition of Random Matrices on Optimal Scale. Commun. Math. Phys. 349, 947–990 (2017). https://doi.org/10.1007/s00220-016-2805-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-016-2805-6