Skip to main content
Log in

Affine Sphere Relativity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz–Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz–Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz–Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aazami A.B., Javaloyes M.A.: Penrose’s singularity theorem in a Finsler spacetime. Class. Quantum Grav. 33, 025003 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Álvarez Paiva, J.C., Thompson, A. C.: Volumes on normed and Finsler spaces. In: A sampler of Riemann–Finsler geometry, vol. 50, pp. 1–48. Cambridge Univ. Press, Cambridge. Math. Sci. Res. Inst. Publ. (2004)

  3. Anderson J.L., Finkelstein D.: Cosmological constant and fundamental length. Am. J. Phys. 39, 901–904 (1971)

    Article  ADS  Google Scholar 

  4. Asanov G.S.: Finsler geometry, relativity and gauge theories. D. Reidel Publishing Co, Dordrecht (1985)

    Book  MATH  Google Scholar 

  5. Basilakos S., Kouretsis A.P., Saridakis E.N., Stavrinos P.: Resembling dark energy and modified gravity with Finsler-Randers cosmology. Phys. Rev. D. 88, 123510 (2013)

    Article  ADS  Google Scholar 

  6. Beem J.K.: Indefinite Finsler spaces and timelike spaces. Can. J. Math. 22, 1035–1039 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beem, J.K.: On the indicatrix and isotropy group in Finsler spaces with Lorentz signature. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 54(8), 385–392 (1974) (1973)

  8. Benoist Y.: Convexes divisibles. C. R. Acad. Sci. Paris Sér. I Math. 332, 387–390 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Band II., Affine Differentialgeometrie. J. Springer, Berlin (1923)

  10. Bock R.D.: Local scale invariance and general relativity. Int. J. Theor. Phys. 42, 1835–1847 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bombelli L., Lee J.-H., Meyer D., Sorkin R.D.: Space-time as a causal set. Phys. Rev. Lett. 59, 521–524 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. Brickell F.: A new proof of Deicke’s theorem on homogeneous functions. Proc. Am. Math. Soc. 16, 190–191 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Calabi E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Michigan Math. J. 5, 105–126 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calabi, E.: Complete affine hyperspheres. I. In: Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971), pp. 19–38. Academic Press, London (1972)

  15. Cartan E.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Ann. Sci. École Norm. Sup. (3) 40, 325–412 (1923)

    MathSciNet  MATH  Google Scholar 

  16. Castro C.: Gravity in curved phase-spaces, Finsler geometry and two-times physics. Int. J. Mod. Phys. A. 27, 1250069 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cheng S.-Y., Yau S.-T.: On the regularity of the Monge-Ampère equation \({{\rm det}(\partial ^{2}u/\partial x_{i} \partial x_{j})=F(x,u)}\). Comm. Pure Appl. Math. 30, 41–68 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, S.Y., Yau, S.-T.: The real Monge-Ampère equation and affine flat structures. In: Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980), pp. 339–370. Science Press, Beijing (1982)

  19. Cheng S.-Y., Yau S.-T.: Complete affine hypersurfaces. I. The completeness of affine metrics. Comm. Pure Appl. Math. 39, 839–866 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deicke A.: Über die Finsler–Räume mit A i  = 0. Arch. Math. 4, 45–51 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dillen F., Vrancken L.: Calabi-type composition of affine spheres. Diff. Geom. Appl. 4, 303–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dixon W.G.: On the uniqueness of the Newtonian theory as a geometric theory of gravitation. Commun. Math. Phys. 45, 167–182 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Duval C., Burdet G., Künzle H.P., Perrin M.: Bargmann structures and Newton–Cartan theory. Phys. Rev. D 31, 1841–1853 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. Duval, C., Gibbons, G.W., Horvathy, P.A., Zhang, P.M.: Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time. Class. Quantum Grav. 31 (2014)

  25. Fox D.J.F.: Functions dividing their Hessian determinants and affine spheres. Asian J. Math. 20(3), 503–530 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fox D.J.F.: A Schwarz lemma for Kähler affine metrics and the canonical potential of a proper convex cone. Annali di Matematica 194, 1–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Geroch R.: A method for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–923 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ghomi, M.: The problem of optimal smoothing for convex functions. Proc. Am. Math. Soc. 130, 2255–2259 (2002) (electronic)

  29. Gigena S.: Integral invariants of convex cones. J. Diff. Geom. 13, 191–222 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Gigena S.: On a conjecture by E. Calabi. Geom. Dedicata 11, 387–396 (1981)

    MathSciNet  MATH  Google Scholar 

  31. Godbillon C.: Géométrie différentielle et mécanique analytique. Hermann, Paris (1969)

    MATH  Google Scholar 

  32. Hartman P.: Ordinary differential equations. Wiley, New York (1964)

    MATH  Google Scholar 

  33. Hildebrand R.: Analytic formulas for complete hyperbolic affine spheres. Contrib. Algebra Geometr. 55, 497–520 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hildebrand R.: Canonical barriers on convex cones. Math. Oper. Res. 39, 841–850 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hildebrand R.: Centro-affine hypersurface immersions with parallel cubic form. Contrib. Algebra Geometr. 56, 593–640 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu Z., Li H., Vrancken L.: Locally strongly convex affine hypersurfaces with parallel cubic form. J. Differ. Geom. 87, 239–308 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Horváth J.I.: A geometrical model for the unified theory of physical fields. Phys. Rev. 80, 901 (1950)

    Article  ADS  MATH  Google Scholar 

  38. Horváth J.I., Moór A.: Entwicklung einer einheitlichen feldtheorie begründet auf die finslersche geometrie. Z. Physik 131, 544–570 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ikeda S.: On the theory of gravitational field in Finsler spaces. Lett. Nuovo Cimento 26, 277–281 (1979)

    Article  MathSciNet  Google Scholar 

  40. Ishikawa H.: Einstein equation in lifted Finsler spaces. Il Nuovo Cimento 56, 252–262 (1980)

    Article  MathSciNet  Google Scholar 

  41. Ishikawa H.: Note on Finslerian relativity. J. Math. Phys. 22, 995–1004 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Jian H., Wang X.-J.: Bernstein theorem and regularity for a class of Monge–Ampère equations. J. Differ. Geom. 93, 431–469 (2013)

    MATH  Google Scholar 

  43. Jo K.: Quasi-homogeneous domains and convex affine manifolds. Topol. Appl. 134, 123–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jörgens K.: Über die Lösungen der Differentialgleichung \({rt-s^2=1}\). Math. Ann. 127, 130–134 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  45. Knebelman M.S.: Conformal geometry of generalized metric spaces. Proc. N. A. S. 15, 376–379 (1929)

    Article  ADS  MATH  Google Scholar 

  46. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. vol. I of Interscience tracts in pure and applied mathematics. Interscience Publishers, New York (1963)

  47. Künzle H.P.: Galilei and Lorentz structures on space-time: comparison of the correspondig geometry and physics. Ann. Inst. H. Poincaré Phys. Theor. 17, 337–362 (1972)

    Google Scholar 

  48. Künzle H.P.: Covariant Newtonian limit of Lorentz space-times. Gen. Rel. Grav. 7, 445–457 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Lämmerzahl C., Perlick V., Hasse W.: Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. D. 86, 104042 (2012)

    Article  ADS  Google Scholar 

  50. Laugwitz, D.: Geometrical methods in the differential geometry of Finsler spaces. In: Geometria del calcolo delle variazioni, pp. 173–226. Springer, Heidelberg, Fondazione C.I.M.E., Florence, vol. 23 of C.I.M.E. Summer Sch. (2011) (Reprint of the 1961 original)

  51. Li A.-M.: Calabi conjecture on hyperbolic affine hyperspheres. II. Math. Ann. 293, 485–493 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, A.M., Simon, U., Zhao, G.S.: Global affine differential geometry of hypersurfaces. Vol. 11 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin (1993)

  53. Li A.-M., Xu R.: A cubic form differential inequality with applications to affine kähler–ricci flat manifolds. Res. Math. 54, 329–340 (2009)

    Article  MATH  Google Scholar 

  54. Li A.-M., Xu R.: A rigidity theorem for an affine Kähler–Ricci flat graph. Res. Math. 56, 141–164 (2009)

    Article  MATH  Google Scholar 

  55. Li, X., Chang, Z.: Exact solution of vacuum field equation in Finsler spacetime. Phys. Rev. D. 90, 064049. arXiv:1401.6363v1 (2014)

  56. Lin F.H., Wang L.: A class of fully nonlinear elliptic equations with singularity at the boundary. J. Geom. Anal. 8, 583–598 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245–272. Academic Press, New York (1974)

  58. Loftin, J.: Survey on affine spheres. In: Handbook of geometric analysis, No. 2., pp. 161–191. Int. Press, Somerville, MA, vol. 13 of Adv. Lect. Math. (ALM) (2010)

  59. Loftin J.C.: Riemannian metrics on locally projectively flat manifolds. Am. J. Math. 124, 595–609 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. Matsumoto M.: On c-reducible Finsler spaces. Tensor 24, 29–37 (1972)

    MathSciNet  MATH  Google Scholar 

  61. Matsumoto M.: On the indicatrices of a Finsler space. Period. Math. Hung. 8, 187–191 (1977)

    MathSciNet  MATH  Google Scholar 

  62. Matsumoto M., Hōjō S.: A conclusive theorem on c-reducible Finsler spaces. Tensor 32, 225–230 (1978)

    MathSciNet  MATH  Google Scholar 

  63. Minguzzi, E.: The connections of pseudo-Finsler spaces. Int. J. Geom. Meth. Mod. Phys. 11, 1460025 (2014). Erratum ibid 12 (2015) 1592001. arXiv:1405.0645

  64. Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays. Monatsh. Math. 177, 569–625 (2015). arXiv:1308.6675

  65. Minguzzi, E.: Light cones in Finsler spacetime. Commun. Math. Phys. 334, 1529–1551 (2015). arXiv:1403.7060

  66. Minguzzi, E.: Raychaudhuri equation and singularity theorems in Finsler spacetimes. Class. Quantum Grav. 32, 185008 (2015). arXiv:1502.02313

  67. Minguzzi, E.: How many futures on Finsler spacetime? J. Phys. Conf. Ser. 626, 012029 (2015). arXiv:1502.02313

  68. Minguzzi, E.: A divergence theorem for pseudo-Finsler spaces (2015). arXiv:1508.06053

  69. Minguzzi, E.: Affine sphere spacetimes which satisfy the relativity principle. Phys. Rev. D. (2016) in press)

  70. Minguzzi, E.: An equivalence of Finslerian relativistic theories. Rep. Math. Phys. 77, 45–55 (2016). arXiv:1412.4228

  71. Miron R.: On the Finslerian theory of relativity. Tensor 44, 63–81 (1987)

    MathSciNet  MATH  Google Scholar 

  72. Miron R., Rosca R., Anastasiei M., Buchner K.: New aspects of Lagrangian relativity. Found. Phys. Lett. 5, 141–171 (1992)

    Article  MathSciNet  Google Scholar 

  73. Mo, L., Xiaohuan, Huang: On characterizations of Randers norms in Minkowski space. Int. J. Math. 21 (2010)

  74. Nomizu K., Sasaki T.: Affine differential geometry. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  75. Perlick V.: Fermat principle in Finsler spacetimes. Gen. Relat. Gravit. 38, 365–380 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Pfeifer C., Wohlfarth M.N.R.: Finsler geometric extension of Einstein gravity. Phys. Rev. D. 85, 064009 (2012)

    Article  ADS  Google Scholar 

  77. Pimenov, R. I.: Axiomatics of generally relativistic and Finsler space-times by means of causality. Sibirsk. Mat. Zh. 29, 133–143, 218 (1988)

  78. Pogorelov A.V.: On the improper convex affine hyperspheres. Geom. Dedicata 1, 33–46 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  79. Randers G.: On an asymmetric metric in the four-space of general relativity. Phys. Rev. D. 59, 195–199 (1941)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Rutz S.F.: A Finsler generalisation of Einstein’s vacuum field equations. Gen. Relat. Gravit. 25, 1139–1158 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Sasaki T.: Hyperbolic affine hyperspheres. Nagoya Math. J. 77, 107–123 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  82. Simon U.: Zur Relativgeometrie: Symmetrische Zusammenhänge auf Hyperflächen. Math. Z. 106, 36–46 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  83. Stavrinos P.C.: Gravitational and cosmological considerations based on the Finsler and Lagrange metric structures. Nonlinear Anal. 71, e1380–e1392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  84. Stavrinos P.C., Kouretsis A.P., Stathakopoulos M.: Friedman-like Robertson–Walker model in generalized metric space-time with weak anisotropy. Gen. Relat. Gravit. 40, 1403–1425 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Storer T.P.: Generalized relativity: a unified field theory based on free geodesic connections in Finsler space. Internat. J. Theoret. Phys. 39, 1351–1374 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  86. Takano Y.: Gravitational field in Finsler spaces. Lettere al Nuovo Cimento 10, 747–750 (1974)

    Article  MathSciNet  Google Scholar 

  87. Takano Y.: Variation principle in Finsler spaces. Lettere al Nuovo Cimento 11, 486–490 (1974)

    Article  MathSciNet  Google Scholar 

  88. Teitelboim, M. H.C.: The cosmological constant and general covariance. Phys. Lett. B. 222 (1989)

  89. Toupin R.A.: World invariant kinematics. Arch. Rational Mech. Anal. 1, 181–211 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Trautman A.: Sur la théorie newtonienne de la gravitation. C. R. Acad. Sci. Paris. 257, 617–620 (1963)

    MathSciNet  MATH  Google Scholar 

  91. Trudinger N.S., Wang X.-J.: Affine complete locally convex hypersurfaces. Invent. Math. 150, 45–60 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Trudinger, N.S., Wang, X.-J.: The Monge–Ampère equation and its geometric applications. In: Handbook of geometric analysis. No. 1, pp. 467–524. Int. Press, Somerville, MA, vol. 7 of Adv. Lect. Math. (ALM) (2008)

  93. Vacaru, S.I.: Principles of Einstein–Finsler gravity and perspectives in modern cosmology. Int. J. Mod. Phys. D. 21, 1250072, 40 (2012)

  94. Vinberg, È.B.: The theory of convex homogeneous cones. Trudy Moskov. Mat. Obšč. 12, 303–358 (1963). [Trans. Mosc. Math. Soc. 12, 340–403 (1963)

  95. Vinberg È.B., Kac V.G.: Quasi-homogeneous cones. Mat. Zametki 1, 347–354 (1967)

    MathSciNet  MATH  Google Scholar 

  96. Voicu N.: New considerations on Einstein equations in anisotropic spaces. AIP Conf. Proc. 1283, 249–257 (2010)

    Article  ADS  Google Scholar 

  97. Wald R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  98. Xu, R., Zhu, L.: A simple proof of a rigidity theorem for an affine Kähler–Ricci flat graph. Res. Math. (2015) (in press)

  99. Yan M.: Extension of convex function. J. Convex Anal. 21, 965–987 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Minguzzi.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minguzzi, E. Affine Sphere Relativity. Commun. Math. Phys. 350, 749–801 (2017). https://doi.org/10.1007/s00220-016-2802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2802-9

Navigation