Abanov, A.G., Gromov, A.: Electromagnetic and gravitational responses of two-dimensional non-interacting electrons in background magnetic field. Phys. Rev. B. 90, 014435 (2014). arXiv:1401.3703 [cond-mat.str-el]
Alvarez-Gaume L., Moore G., Vafa C.: Theta functions, modular invariance, and strings. Commun. Math. Phys. 106, 1–40 (1986)
ADS
MathSciNet
Article
MATH
Google Scholar
Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. II. Bull Lond. Math. Soc. 5, 229–234 (1973)
Article
MATH
Google Scholar
Atiyah M.F., Singer I.M.: The index of elliptic operators. IV. Ann. Math. (2) 93, 119–138 (1971)
MathSciNet
Article
MATH
Google Scholar
Avron J.E., Seiler R.: Quantization of the Hall conductance for general, multiparticle Schrödinger hamiltonians. Phys. Rev. Lett. 54, 259 (1985)
ADS
MathSciNet
Article
Google Scholar
Avron J.E., Seiler R., Zograf P.G.: Adiabatic quantum transport: quantization and fluctuations. Phys. Rev. Lett. 73(24), 3255–3257 (1994)
ADS
Article
Google Scholar
Avron, J.E., Seiler, R., Zograf, P.G.: Viscosity of quantum Hall fluids. Phys. Rev. Lett. 75(4), 697–700 (1995). arXiv:cond-mat/9502011
Belavin A., Knizhnik V.: Algebraic geometry and the geometry of quantum strings. Phys. Lett. B 168(3), 201–206 (1986)
ADS
MathSciNet
Article
MATH
Google Scholar
Belavin A., Knizhnik V.: Complex geometry and the theory of quantum strings. Sov. Phys. JETP 64(2), 215–228 (1986)
MathSciNet
MATH
Google Scholar
Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, pp. viii+369. Springer-Verlag, Berlin (1992)
Berman, R.: Kähler–Einstein metrics emerging from free fermions and statistical mechanics. JHEP. 10, 106 (2011). arXiv:1009.2942 [hep-th]
Berman, R.: Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327, 1–47 (2014). arXiv:0812.4224 [math.CV]
Berthomieu A.: Analytic torsion of all vector bundles over an elliptic curve. J. Math. Phys. 42(9), 4466–4487 (2001)
ADS
MathSciNet
Article
MATH
Google Scholar
Bismut J.-M.: The Atiyah-Singer Index Theorem for families of Dirac operators: two heat equation proofs. Invent. Math. 83, 91–151 (1986)
ADS
MathSciNet
Article
MATH
Google Scholar
Bismut J.-M., Bost J.-B.: Fibrés déterminants, métriques de Quillen et dégénérescence des courbes. Acta Math. 165(1-2), 1–103 (1990)
MathSciNet
Article
Google Scholar
Bismut J.-M., Cheeger J.: \({\eta}\) -invariants and their adiabatic limits. J. Am. Math. Soc. 2(1), 33–70 (1989)
MathSciNet
MATH
Google Scholar
Bismut J.-M., Freed D.: The analysis of elliptic families. I.. Commun. Math. Phys. 106(1), 159–176 (1986)
ADS
Article
MATH
Google Scholar
Bismut J.-M., Freed D.: The analysis of elliptic families. II. Commun. Math. Phys. 107(1), 103–163 (1987)
ADS
Article
MATH
Google Scholar
Bismut J.-M., Gillet H., Soulé C.: Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms. Commun. Math. Phys. 115(1), 79–126 (1988)
ADS
MathSciNet
Article
MATH
Google Scholar
Bismut J.-M., Gillet H., Soulé C.: Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants. Commun. Math. Phys. 115(2), 301–351 (1988)
ADS
MathSciNet
Article
MATH
Google Scholar
Bismut J.-M., Köhler K.: Higher analytic torsion forms for direct images and anomaly formulas. J. Algebraic Geom. 1(4), 647–684 (1992)
MathSciNet
MATH
Google Scholar
Bismut J.-M., Vasserot E.: The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle. Commun. Math. Phys. 125, 355–367 (1989)
ADS
MathSciNet
Article
MATH
Google Scholar
Bost J.-B.: Intrinsic heights of stable varieties and abelian varieties. Duke Math. J. 82(1), 21–70 (1996)
MathSciNet
Article
MATH
Google Scholar
Bost J.-B., Jolicœur T.: A holomorphy property and the critical dimension in string theory from an index theorem. Nucl. Phys. B 286, 175–188 (1987)
Article
Google Scholar
Bradlyn, B., Read, N.: Low-energy effective theory in the bulk for transport in a topological phase. Phys. Rev. B 91, 125303 (2015). arXiv:1407.2911 [cond-mat.mes-hall]
Bradlyn, B., Read, N.: Topological central charge from Berry curvature: Gravitational anomalies in trial wave functions for topological phases. Phys. Rev. B 91, 165306 [cond-mat.mes-hall] (2015). arXiv:1502.04126
Can, T., Laskin, M., Wiegmann, P.: Fractional quantum Hall effect in a curved space: gravitational anomaly and electromagnetic response. Phys. Rev. Lett. 113, 046803 (2014). arXiv:1402.1531 [cond-mat.str-el]
Can, T., Laskin, M., Wiegmann, P.: Geometry of quantum Hall states: gravitational anomaly and transport coefficients. Ann. Phys. 362, 752–794 (2015). arXiv:1411.3105 [cond-mat.str-el]
Catlin, D.: The Bergman kernel and a theorem of Tian, analysis and geometry in several complex variables (Katata, 1997), pp. 1–23. Trends Math., Birkhäuser Boston, Boston (1999)
Dai X.: Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence. J. Am. Math. Soc. 4, 265–321 (1991)
MathSciNet
Article
MATH
Google Scholar
D’Hoker E., Phong D.H.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys. 104, 537–545 (1986)
ADS
MathSciNet
Article
MATH
Google Scholar
D’Hoker E., Phong D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917 (1988)
ADS
MathSciNet
Article
Google Scholar
Donaldson, S.K.: Scalar curvature and projective embeddings. II. Q. J. Math. 56(3), 345–356 (2005). arXiv:math/0407534 [math.DG]
Douglas, M.R., Klevtsov, S.: Bergman kernel from path integral. Commun. Math. Phys. 293(1), 205–230 (2010). arXiv:0808.2451 [hep-th]
Fay, J.: Kernel functions, analytic torsion and moduli spaces. Memoirs of AMS, Vol. 96 no. 464, Providence RI (1992)
Ferrari, F., Klevtsov, S.: FQHE on curved backgrounds, free fields and large N. JHEP. 12, 086 (2014). arXiv:1410.6802 [hep-th]
Ferrari, F., Klevtsov, S., Zelditch, S.: Gravitational actions in two dimensions and the Mabuchi functional, Nucl. Phys. B. 859(3), 341–369 (2012). arXiv:1112.1352 [hep-th]
Forrester P.J.: Log-gases and random matrices. Princeton University Press, Princeton (2010)
MATH
Google Scholar
Fröhlich J., Studer U.M.: \({U(1)\times SU(2)}\) -gauge invariance of non-relativistic quantum mechanics, and generalized Hall effects. Commun. Math. Phys. 148, 553–600 (1992)
ADS
Article
MATH
Google Scholar
Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley, New York (1978)
MATH
Google Scholar
Gromov, A., Abanov, A.G.: Density-curvature response and gravitational anomaly. Phys. Rev. Lett. 113, 266802 (2014). arXiv:1403.5809 [cond-mat.str-el]
Gromov, A., Cho, G.Y., You, Y., Abanov, A.G., Fradkin, E.: Framing anomaly in the effective theory of fractional quantum Hall effect. Phys. Rev. Lett. 114, 016805 (2015). arXiv:1410.6812 [cond-mat.str-el]
Kirby, R.: The topology of 4-manifolds. Lecture Notes in Mathematics, Vol. 1374, pp. 108. Springer-Verlag, Berlin (1989)
Klevtsov, S.: Random normal matrices, Bergman kernel and projective embeddings. JHEP. 1401, 133 (2014). arXiv:1309.7333 [hep-th]
Klevtsov, S., Wiegmann, P.: Geometric adiabatic transport in Quantum Hall states. Phys. Rev. Lett. 115, 086801 (2015). arXiv:1504.07198 [cond-mat.str-el]
Knudsen F., Mumford D.: The projectivity of the moduli space of stable curves. I. Preliminaries on ‘det’ and ‘Div’. Math. Scand. 39, 19–55 (1976)
Article
MATH
Google Scholar
Köhler K.: Holomorphic torsion on Hermitian symmetric spaces. J. Reine Angew. Math. 460, 93–116 (1995)
MathSciNet
MATH
Google Scholar
Laskin, M., Can, T., Wiegmann, P.: Collective field theory for quantum Hall states. Phys. Rev. B, 92, 235141 (2015). arXiv:1412.8716 [cond-mat.str-el]
Laughlin R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50(18), 1395 (1983)
ADS
Article
Google Scholar
Lévay P.: Berry phases for Landau Hamiltonians on deformed tori. J. Math. Phys. 36, 2792–2802 (1995)
ADS
MathSciNet
Article
MATH
Google Scholar
Lévay P.: Berry’s phase, chaos, and the deformations of Riemann surfaces. Phys. Rev. E 56(5), 6173–6176 (1997)
ADS
MathSciNet
Article
Google Scholar
Lu Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch Amer. J. Math. 122(2), 235–273 (2000)
Article
MATH
Google Scholar
Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, pp. xiv+422,. Birkhäuser Verlag, Basel (2007)
Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1–56 (2012). arXiv:1009.4405 [math.DG]
Mumford D.: Tata lectures on theta I. Birkhäuser, Boston (1983)
Book
MATH
Google Scholar
Niu Q., Thouless D.J., Wu Y.-S.: Quantized Hall conductance as a topological invariant. Phys. Rev. B 31, 3372 (1985)
ADS
MathSciNet
Article
Google Scholar
Polyakov A.M.: Quantum gravity in two dimensions. Mod. Phys. Lett. A 2(11), 893–898 (1987)
ADS
MathSciNet
Article
Google Scholar
Quillen D.: Determinants of Cauchy–Riemann operators over a Riemann surface. Funct. Anal. Appl. 19(1), 37–41 (1985)
Article
MATH
Google Scholar
Ray D.B., Singer I.M.: Analytic torsion for complex manifolds. Ann. Math. (2) 98, 154–177 (1973)
MathSciNet
Article
MATH
Google Scholar
Read, N.: Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and \({p_x+ip_y}\) paired superfluids. Phys. Rev. B. 79(4), 045308 (2009). arXiv:0805.2507 [cond-mat.mes-hall]
Read, N., Rezayi, E.H.: Hall viscosity, orbital spin, and geometry: paired superfluids and quantum Hall systems. Phys. Rev. B. 84(4), 085316 (2009). arXiv:1008.0210 [cond-mat.mes-hall]
Simon B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167 (1983)
ADS
MathSciNet
Article
Google Scholar
Son, D.T.: Newton-Cartan Geometry and the Quantum Hall Effect. arXiv:1306.0638 [cond-mat.mes-hall]
Tao R., Wu Y.-S.: Gauge invariance and fractional quantum Hall effect. Phys. Rev. B 30, 1097 (1984)
ADS
Article
Google Scholar
Tejero Prieto C.: Fourier-Mukai transform and adiabatic curvature of spectral bundles for Landau Hamiltonians on Riemann surfaces. Commun. Math. Phys. 265(2), 373–396 (2006)
ADS
MathSciNet
Article
MATH
Google Scholar
Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)
ADS
Article
Google Scholar
Tokatly, I.V., Vignale, G.: Lorentz shear modulus of a two-dimensional electron gas at high magnetic field. Phys. Rev. B. 76, 161305 (2007). arXiv:0706.2454 [cond-mat.mes-hall]
Tokatly, I., Vignale, G.: Lorentz shear modulus of fractional quantum Hall states. J. Phys. C. 21, 275603 (2009). arXiv:0812.4331 [cond-mat.mes-hall]
Verlinde E.P., Verlinde H.L.: Chiral bosonization, determinants and the string partition function. Nucl. Phys. B 288, 357–396 (1987)
ADS
MathSciNet
Article
Google Scholar
Wen X.G., Zee A.: Shift and spin vector: New topological quantum numbers for the Hall fluids. Phys. Rev. Lett. 69, 953 (1992)
ADS
Article
Google Scholar
Weng L.: Regularized determinants of Laplacians for Hermitian line bundles over projective spaces. J. Math. Kyoto Univ. 35(3), 341–355 (1995)
MathSciNet
MATH
Google Scholar
Witten E.: Global gravitational anomalies. Comm. Math. Phys. 100(2), 197–229 (1985)
ADS
MathSciNet
Article
MATH
Google Scholar
Witten, E.: \({SL(2,\mathbb{Z})}\) action on 3-dimensional conformal field theories with abelian symmetry. From fields to strings: circumnavigating theoretical physics, Vol. 2, pp. 1173–1200. World Sci. Publ., Singapore (2005)
Witten, E.: Fermion path integrals and topological phases. Rev. Mod. Phys. 88, 35001 (2016). arXiv:1508.04715 [cond-mat.mes-hall]
Zabrodin, A., Wiegmann, P.: Large N expansion for the 2D Dyson gas. J. Phys. A. 39, 8933–8963 (2006). arXiv:hep-th/0601009
Zelditch, S.: Szegő kernels and a theorem of Tian. IMRN. 1998(6), 317–331 (1998). arXiv:math-ph/0002009
Zograf, P.G., Takhtadzhyan, L.A.: A local index theorem for families of \({\bar\partial}\) -operators on Riemann surfaces, Uspekhi Mat. Nauk 42(6)(258), 133–150 (1987) (Russian); English translation in Russian Math. Surveys 42:169–190