Skip to main content

Advertisement

Log in

Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss spectral characteristics of a one-dimensional quantum walk whose coins are distributed quasi-periodically. The unitary update rule of this quantum walk shares many spectral characteristics with the critical Almost-Mathieu Operator; however, it possesses a feature not present in the Almost-Mathieu Operator, namely singularity of the associated cocycles (this feature is, however, present in the so-called Extended Harper’s Model). We show that this operator has empty absolutely continuous spectrum and that the Lyapunov exponent vanishes on the spectrum; hence, this model exhibits Cantor spectrum of zero Lebesgue measure for all irrational frequencies and arbitrary phase, which in physics is known as Hofstadter’s butterfly. In fact, we will show something stronger, namely, that all spectral parameters in the spectrum are of critical type, in the language of Avila’s global theory of analytic quasiperiodic cocycles. We further prove that it has empty point spectrum for each irrational frequency and away from a frequency-dependent set of phases having Lebesgue measure zero. The key ingredients in our proofs are an adaptation of Avila’s Global Theory to the present setting, self-duality via the Fourier transform, and a Johnson-type theorem for singular dynamically defined CMV matrices which characterizes their spectra as the set of spectral parameters at which the associated cocycles fail to admit a dominated splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Ahlbrecht A., Vogts H., Werner A., Werner R.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52, 042201 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alfors, L.: Complex Analysis, 3rd edition. McGraw-Hill Education, New York (1978)

  4. Avila, A.: Almost reducibity and absolute continuity I (Preprint)

  5. Avila, A.: KAM, Lyapunov exponents and spectral dichotomy for one-frequency Schrödinger operators. (Preparation)

  6. Avila A.: Global theory of one-frequency Schrödinger operators. Acta Math. 215, 1–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avila, A.: On point spectrum at critical coupling (Preprint)

  8. Avila, A., Jitomirskaya, S., Marx, C.: Spectral theory of extended Harper’s model and a question by Erdős and Szekeres. arxiv:1602.05111 (Preprint)

  9. Avila A., Jitomirskaya S., Sadel C.: Complex one-frequency cocycles. J. Eur. Math. Soc. 16(9), 1915–1935 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berezanskii Y.M.: Expansions in Eigenfunctions of Self-Adjoint Operators. American Mathematical Society, Providence (1968)

    MATH  Google Scholar 

  11. Bourgain J., Goldstein M.: On nonperturbative localization with quasi-periodic potential. Ann. Math. 152, 835–879 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgain J., Grünbaum A., Velázquez L., Wilkening J.: Quantum recurrence of a subspace and operator-valued Schur functions. Commun. Math. Phys. 329, 1031–1067 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bourget O., Howland J., Joye A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, 191–227 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bourgain J., Jitomirskaya S.: Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys. 108(5-6), 1203–1218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cantero M.-J., Grünbaum A., Moral L., Velázquez L.: Matrix-valued Szegő polynomials and quantum random walks. Commun. Pure Appl. Math. 63, 464–507 (2010)

    MATH  Google Scholar 

  16. Cantero M.-J., Grünbaum A., Moral L., Velázquez L.: The CGMV method for quantum walks. Quantum Inf. Process. 11, 1149–1192 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cedzich C., Rybár T., Werner A.H., Alberti A., Genske M., Werner R.F.: Propagation of quantum walks in electric fields. Phys. Rev. Lett. 111, 160601 (2013)

    Article  ADS  Google Scholar 

  18. Cedzich C., Werner R.F.: Revivals in quantum walks with quasi-periodically time-dependent coin. Phys. Rev. A 93, 032329 (2016)

    Article  ADS  Google Scholar 

  19. Damanik D., Fillman J., Ong D.C.: Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices. J. Math. Pures Appl. 105, 293–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Damanik D., Fillman J., Vance R.: Dynamics of unitary operators. J. Fractal Geom. 1, 391–425 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Damanik D., Fillman J., Lukic M., Yessen W.: Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discret. Contin. Dyn. Syst. Ser. S 9, 1009–1023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Damanik D., Munger P., Yessen W.: Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, II. Appl. J. Stat. Phys. 153, 339–362 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Delyon F.: Absence of localization for the almost Mathieu equation. J. Phys. A 20, L21–L23 (1987)

    Article  ADS  MATH  Google Scholar 

  24. Furman A.: On the multiplicative ergodic theorem for uniquely ergodic systems. Ann. Inst. Henri Poincaré 33, 797–815 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Gesztesy F., Zinchenko M.: Weyl–Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Theory 139, 172–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geronimo J.S., Johnson R.A.: Rotation number associated with difference equations satisfied by polynomials orthogonal on the unit circle. J. Differ. Equ. 132, 140–178 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gordon A., Jitomirskaya S., Last Y., Simon B.: Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 178, 169–183 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jitomirskaya, S., Marx, C.A.: Spectral theory for extended Harper’s model. www.math.uci.edu/mpuci/preprints (Preprint)

  29. Jitomirskaya S., Marx C.: Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model. Commun. Math. Phys. 316(1), 237–267 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Joye A.: Random time-dependent quantum walks. Commun. Math. Phys. 307, 65–100 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Joye A.: Dynamical localization for d-dimensional random quantum walks. Quantum Inf. Process. 11, 1251–1269 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Joye A., Merkli M.: Dynamical localization of quantum walks in random environments. J. Stat. Phys. 140, 1025–1053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kato, T.: Perturbation Theory for Linear Operators, 2nd Edition, Grundlehren der mathemaitschen Wissenschaften 132 [A Series of Comprenensive Studies in Mathematics]. Springer, Berlin (1976)

  34. Kempe J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2013)

    Article  ADS  Google Scholar 

  35. Konno N.: The uniform measure for discrete-time quantum walks in one dimension. Quantum Inf. Process. 13, 1103–1125 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Konno N., Segawa E.: Localization of discrete-time quantum walks on a half line via the CGMV method. Quantum Inf. Comput. 11, 485–495 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Konno N., Segawa E.: One-dimensional quantum walks via generating function and the CGMV method. Quantum Inf. Comput. 14, 1165–1186 (2014)

    MathSciNet  Google Scholar 

  38. Linden N., Sharam J.: Inhomogeneous quantum walks. Phys. Rev. A 80, 052327 (2009)

    Article  ADS  Google Scholar 

  39. Marx C.: Dominated splittings and the spectrum of singular quasi-periodic Jacobi operators. Nonlinearity 27(12), 3059–3072 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Sch’Nol I.: On the behavior of the Schrödinger equations. Mat. Sb 42, 273–286 (1957)

    Google Scholar 

  41. Ribeiro P., Milman P., Mosseri R.: Aperiodic quantum random walks. Phys. Rev. Lett. 93, 190503 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. Shikano Y., Katsura H.: Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  43. Shikano Y., Katsura H.: Notes on inhomogeneous quantum walks. AIP Conf. Proc. 1363, 151 (2011)

    Article  ADS  MATH  Google Scholar 

  44. Simon B.: Trace Ideals and Their Applications, Mathematical Surveys and Monographs, Vol. 120. American Mathematical Society, Providence (2000)

    Google Scholar 

  45. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory., Colloquium Publications, vol. 54. American Mathematical Society, Providence (2005)

  46. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory. Colloquium Publications, vol. 54. American Mathematical Society, Providence (2005)

  47. Sunada T., Tate T.: Asymptotic behavior of quantum walks on the line. J. Funct. Anal. 262, 2608–2645 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xue P., Qin H., Tang B., Sanders B.C.: Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space. J. Phys. 16, 053009 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghe Zhang.

Additional information

Communicated by H.-T. Yau

J. F. was supported in part by an AMS-Simons travel Grant 2016–2018, and by NSF Grants DMS–1067988 and DMS–1361625.

Z. Z. was supported in part by AMS-Simons travel Grant 2014-2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillman, J., Ong, D.C. & Zhang, Z. Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator. Commun. Math. Phys. 351, 525–561 (2017). https://doi.org/10.1007/s00220-016-2775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2775-8

Navigation