Communications in Mathematical Physics

, Volume 352, Issue 1, pp 185–199 | Cite as

The Spinning Particle with Curved Target



We extend our previous calculation of the BV cohomology of the spinning particle with a flat target to the general case, in which the target carries a non-trivial pseudo-Riemannian metric and a magnetic field.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M.: The geometry of the master equation and topological quantum field theory. Int. J. Modern Phys. A 12(7), 1405–1429 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cattaneo, A.S., Schiavina, M.: On time. arXiv:1607.02412
  3. 3.
    Dickey, L.A.: Poisson brackets with divergence terms in field theories: three examples. In: Higher Homotopy Structures in Topology and Mathematical Physics (Poughkeepsie, NY, 1996), Contemp. Math., vol. 227, pp. 67–78. Amer. Math. Soc., Providence (1999)Google Scholar
  4. 4.
    Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111(3), 535–560 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Getzler E.: The Batalin–Vilkovisky cohomology of the spinning particle. J. High Energy Phys. 2016(6), 1–17 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kruskal M.D., Miura R.M., Gardner C.S., Zablusky N.J.: Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws. J. Math. Phys. 11, 952–960 (1970)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Soloviev V.O.: Boundary values as Hamiltonian variables. I. New Poisson brackets. J. Math. Phys. 34(12), 5747–5769 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations