Skip to main content

Landauer’s Principle in Repeated Interaction Systems

Abstract

We study Landauer’s Principle for Repeated Interaction Systems (RIS) consisting of a reference quantum system \({\mathcal{S}}\) in contact with a structured environment \({\mathcal{E}}\) made of a chain of independent quantum probes; \({\mathcal{S}}\) interacts with each probe, for a fixed duration, in sequence. We first adapt Landauer’s lower bound, which relates the energy variation of the environment \({\mathcal{E}}\) to a decrease of entropy of the system \({\mathcal{S}}\) during the evolution, to the peculiar discrete time dynamics of RIS. Then we consider RIS with a structured environment \({\mathcal{E}}\) displaying small variations of order \({T^{-1}}\) between the successive probes encountered by \({\mathcal{S}}\), after \({n \simeq T}\) interactions, in keeping with adiabatic scaling. We establish a discrete time non-unitary adiabatic theorem to approximate the reduced dynamics of \({\mathcal{S}}\) in this regime, in order to tackle the adiabatic limit of Landauer’s bound. We find that saturation of Landauer’s bound is related to a detailed balance condition on the repeated interaction system, reflecting the non-equilibrium nature of the repeated interaction system dynamics. This is to be contrasted with the generic saturation of Landauer’s bound known to hold for continuous time evolution of an open quantum system interacting with a single thermal reservoir in the adiabatic regime.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Abou Salem W., Fröhlich J.: Adiabatic theorems and reversible isothermal processes. Lett. Math. Phys. 72, 153–163 (2005)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  2. 2

    Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems. I, Lecture Notes in Mathematics, vol. 1880. Springer, Berlin (2006). The Hamiltonian approach, Lecture notes from the Summer School held in Grenoble, June 16–July 4, 2003

  3. 3

    Attal, S., Joye, A., Pillet, C.-A. (eds.): Open quantum systems. II, Lecture Notes in Mathematics, vol. 1881. Springer, Berlin (2006). The Markovian approach, Lecture notes from the Summer School held in Grenoble, June 16–July 4, 2003

  4. 4

    Attal, S., Joye, A., Pillet, C.-A. (eds.): Open quantum systems. III, Lecture Notes in Mathematics, vol. 1882. Springer, Berlin (2006). Recent developments, Lecture notes from the Summer School held in Grenoble, June 16–July 4, 2003

  5. 5

    Attal S., Pautrat Y.: From repeated to continuous quantum interactions. Ann. H. Poincaré 7(1), 59–104 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6

    Avron J.E., Elgart A.: Adiabatic theorem without a gap condition. Commun. Math. Phys. 203(2), 445–463 (1999)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  7. 7

    Avron J.E., Fraas M., Graf G.M., Grech P.: Adiabatic theorems for generators of contracting evolutions. Commun. Math. Phys. 314(1), 163–191 (2012)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  8. 8

    Avron J.E., Seiler R., Yaffe L.G.: Adiabatic theorems and applications to the quantum hall effect. Commun. Math. Phys. 110, 33–49 (1987)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  9. 9

    Born M., Fock V.: Beweis des Adiabatensatzes. Z. Phys. 51, 165–180 (1928)

    ADS  Article  MATH  Google Scholar 

  10. 10

    Bruneau L., Joye A., Merkli M.: Asymptotics of repeated interaction quantum systems. J. Funct. Anal. 239(1), 310–344 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11

    Bruneau L., Joye A., Merkli M.: Random repeated interaction quantum systems. Commun. Math. Phys. 284(2), 553–581 (2008)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  12. 12

    Bruneau L., Joye A., Merkli M.: Repeated interactions in open quantum systems. J. Math. Phys. 55(7), 075204 (2014)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  13. 13

    Bruneau L., Pillet C.-A.: Thermal relaxation of a QED cavity. J. Stat. Phys. 134(5–6), 1071–1095 (2009)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  14. 14

    Cipriani, F.: Dirichlet forms on noncommutative spaces. In: Quantum Potential Theory, Lecture Notes in Mathematics, vol. 1954, pp. 161–276. Springer, Berlin (2008)

  15. 15

    Crooks G.E.: Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008)

    ADS  Article  Google Scholar 

  16. 16

    Dereziński, J., Früboes, R.: Fermi golden rule and open quantum systems. In: Open Quantum Systems. III, Lecture Notes in Mathematics, vol. 1882, pp. 67–116. Springer, Berlin (2006)

  17. 17

    Dranov A., Kellendonk J., Seiler R.: Discrete time adiabatic theorems for quantum mechanical systems. J. Math. Phys. 39(3), 1340–1349 (1998)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  18. 18

    Evans D.E., Høegh-Krohn R.: Spectral properties of positive maps on C*-algebras. J. Lond. Math. Soc. (2) 17(2), 345–355 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19

    Fagnola F., Umanità V.: Generators of kms symmetric markov semigroups on \({\mathcal{B}(h)}\) symmetry and quantum detailed balance. Commun. Math. Phys. 298(2), 523–547 (2010)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  20. 20

    Goldstein S., Lindsay J.M.: Kms-symmetric markov semigroups. Math. Z. 219(1), 591–608 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21

    Groh U.: The peripheral point spectrum of Schwarz operators on C*-algebras. Math. Z. 176(3), 311–318 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22

    Horowitz J.M., Parrondo J.M.R.: Entropy production along nonequilibrium quantum jump trajectories. New J. Phys. 15(8), 085028 (2013)

    ADS  Article  Google Scholar 

  23. 23

    Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics. an introduction. In: Quantum Theory from Small to Large Scales, pp. 213–410 (2012)

  24. 24

    Jakšić V., Pillet C.-A.: A note on the Landauer principle in quantum statistical mechanics. J. Math. Phys. 55(7), 075210 (2014)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  25. 25

    Jakšić, V., Pillet, C.-A., Westrich, M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154(1–2), 153–187 (2014)

  26. 26

    Joye A.: General adiabatic evolution with a gap condition. Commun. Math. Phys. 275, 139–162 (2007)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  27. 27

    Kato T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Japan 5, 435 (1950)

    ADS  Article  Google Scholar 

  28. 28

    Kato T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1976)

    Book  Google Scholar 

  29. 29

    Kümmerer, B.: Quantum Markov processes and applications in physics. In: Quantum Independent Increment Processes. II, Lecture Notes in Mathematics, vol. 1866, pp. 259–330. Springer, Berlin (2006)

  30. 30

    Landauer R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  31. 31

    Marden, M.: The Geometry of the Zeros of a Polynomial in a Complex Variable. Mathematical Surveys, No. 3. Amer. Math. Soc., New York (1949)

  32. 32

    Nenciu G.: On the adiabatic theorem of quantum mechanics. J. Phys. A Math. Gen. 13, 15–18 (1980)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  33. 33

    Ohya M., Petz D.: Quantum Entropy and Its Use. Texts and Monographs in Physics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  34. 34.

    Rastegin A.: Relations for certain symmetric norms and anti-norms before and after partial trace. J. Stat. Phys. 148, 1040–1053 (2012)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  35. 35

    Reeb D., Wolf M.M.: An improved Landauer principle with finite-size corrections. New J. Phys. 16(10), 103011 (2014)

    ADS  Article  Google Scholar 

  36. 36

    Russo B., Dye H.: A note on unitary operators in C*-algebras. Duke Math. J. 33, 413–416 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  37. 37

    Schmid, J.: Adiabatic theorems with and without spectral gap condition for non- semisimple spectral values. In: Exner, P., König, W., Neidhardt, H. (eds.) Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference. World Scientific Publishing, Singapore (2014). arXiv:1401.0089

  38. 38

    Schrader, R.: Perron–Frobenius theory for positive maps on trace ideals. In: Mathematical Physics in Mathematics and Physics (Siena, 2000), Fields Inst. Commun., vol. 30, pp. 361–378. Amer. Math. Soc., Providence (2001)

  39. 39

    Tanaka, A.: Adiabatic theorem for discrete time evolution. J. Phys. Soc. Japan 80(12) (2011)

  40. 40

    Teufel S.: A note on the adiabatic theorem without gap condition. Lett. Math. Phys. 58, 261–266 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. 41

    Wolf, M.M.: Quantum channels and operations: Guided tour. http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf. Lecture notes based on a course given at the Niels-Bohr Institute (2012)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Pautrat.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanson, E.P., Joye, A., Pautrat, Y. et al. Landauer’s Principle in Repeated Interaction Systems. Commun. Math. Phys. 349, 285–327 (2017). https://doi.org/10.1007/s00220-016-2751-3

Download citation