Abstract
We assess the ODE/IM correspondence for the quantum \({\mathfrak{g}}\)-KdV model, for a non-simply laced Lie algebra \({\mathfrak{g}}\). This is done by studying a meromorphic connection with values in the Langlands dual algebra of the affine Lie algebra \({{\mathfrak{g}}^{(1)}}\), and constructing the relevant \({\Psi}\)-system among subdominant solutions. We then use the \({\Psi}\)-system to prove that the generalized spectral determinants satisfy the Bethe Ansatz equations of the quantum \({\mathfrak{g}}\)-KdV model. We also consider generalized Airy functions for twisted Kac–Moody algebras and we construct new explicit solutions to the Bethe Ansatz equations. The paper is a continuation of our previous work on the ODE/IM correspondence for simply-laced Lie algebras.
Similar content being viewed by others
References
Adamopoulou P., Dunning C.: Bethe Ansatz equations for the classical \({A_n^{(1)}}\) affine Toda field theories. J. Phys. A 47, 205205 (2014)
Bazhanov V.V., Hibberd A., Khoroshkin S.: Integrable structure of W3 conformal field theory, quantum Boussinesq theory and boundary affine Toda theory. Nuclear Phys. B 622(3), 475–547 (2002)
Bazhanov V.V., Lukyanov S.: Integrable structure of quantum field theory: classical flat connections versus quantum stationary states. J. High Energy Phys. 2014(9), 1–69 (2014)
Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Spectral determinants for Schrodinger equation and Q operators of conformal field theory. J. Stat. Phys. 102, 567–576 (2001)
Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. II. Q-operator and DDV equation. Commun. Math. Phys. 190(2), 247–278 (1997)
Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Higher-level eigenvalues of Q-operators and Schroedinger equation. Adv. Theor. Math. Phys. 7, 711 (2004)
Berman S., Lee T., Moody R.: The spectrum of a coxeter transformation, affine coxeter transformations, and the defect map. J. Algebra 121, 339–357 (1987)
Bertola, M., Dubrovin, B., Yang, D.: Simple Lie algebras and topological ODEs. arXiv:1508.03750
Collingwood, D., McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Mathematical Series. Van Nostrand Reinhold Co., New-York (1993)
Dorey P., Dunning C., Masoero D., Suzuki J., Tateo R.: Pseudo-differential equations, and the Bethe ansatz for the classical Lie algebras. Nuclear Phys. B 772(3), 249–289 (2007)
Dorey P., Dunning C., Tateo R.: Differential equations for general SU(n) Bethe ansatz systems. J. Phys. A 33(47), 8427–8441 (2000)
Dorey P., Faldella S., Negro S., Tateo R.: The Bethe Ansatz and the Tzitzeica–Bullough–Dodd equation. Philos. Trans. Roy. Soc. Lond. A 371, 20120052 (2013)
Dorey P., Tateo R.: Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations. J. Phys. A 32, L419–L425 (1999)
Drinfeld V.G., Sokolov V.V.: Lie algebras and equations of KdV type. Soviet J. Math. 30, 1975–2036 (1985)
Eastham, M.S.P.: The Asymptotic Solution of Linear Differential Systems, Volume 4 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York (1989). (Applications of the Levinson theorem, Oxford Science Publications)
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions. Vols. I, II. McGraw-Hill Book Company, Inc., New York (1953)
Fedoryuk M.: Asymptotic Analysis. Springer, Berlin (1993)
Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. In: Integrable Systems and Quantum Groups, pp. 349–418. Springer, Berlin
Feigin, B., Frenkel, E.: Quantization of soliton systems and Langlands duality. In: Exploring New Structures and Natural Constructions in Mathematical Physics. Advanced Studies in Pure Mathematics, vol. 61, pp. 185–274. Mathematical Society of Japan, Tokyo (2011)
Frenkel, E., Hernandez, D.: Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers. arXiv:1606.05301
Frenkel, E., Hernandez, D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)
Fuchs J., Schellekens B., Schweigert C.: From Dynkin diagram symmetries to fixed point structures. Commun. Math. Phys. 180(1), 39–97 (1996)
Fulton, W., Harris, J.: Representation Theory, Volume 129 of Graduate Texts in Mathematics. Springer, New York (1991). (A first course, Readings in Mathematics).
Gaiotto D., Moore G., Neitzke A.: Wall-crossing, hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)
Hernandez, D., Jimbo, M. Asymptotic representations and Drinfeld rational fractions. Compositio Mathematica 148(5), 1593–623 (2012)
Howlett R., Rylands L., Taylor D.: Matrix generators for exceptional groups of Lie type. J. Symbolic Comput. 31(4), 429–445 (2001)
Humphreys, J.E.: Reflection Groups and Coxeter Groups, Volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)
Kac V.G.: Infinite-Dimensional Lie Algebras. 3rd edn. Cambridge University Press, Cambridge (1990)
Kojima, T.: Baxter’s q-operator for the W-algebra WN. J. Phys. A Math. Theor. 41(35), 355206 (2008)
Kostant B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math. 81, 973–1032 (1959)
Lukyanov S.L., Zamolodchikov A.B. Quantum sine(h)-Gordon model and classical integrable equations. JHEP. 1007:008 (2010)
Masoero D.: Y-system and deformed thermodynamic Bethe Ansatz. Lett. Math. Phys. 94(2), 151–164 (2010)
Masoero D., Raimondo A., Valeri D.: Bethe Ansatz and the spectral theory of affine lie algebra-valued connections I. The simply-laced case. Commun. Math. Phys. 344(3), 719–750 (2016)
Miller, P.: Applied Asymptotic Analysis, Volume 75 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2006)
Mukhin, E., Varchenko, A.: Populations of solutions of the XXX Bethe equations associated to Kac–Moody algebras. Contemp. Math. 392, 95–102 (2005)
Mukhin E., Varchenko A.: Quasi-polynomials and the bethe ansatz. Geom. Topol. Monogr. 13, 385–420 (2008)
Eswara R.S.: On representations of loop algebras. Commun. Algebra. 21(6), 2131–2153 (1993)
Reshetikhin N.Y., Wiegmann P.B.: Towards the Classification of completely integrable quantum field theories. Phys. Lett. B 189, 125–131 (1987)
Sun, J.: Polynomial relations for q-characters via the ODE/IM correspondence. SIGMA Symmetry Integr. Geom. Methods Appl. 8, 028–34 (2012)
Suzuki, J.: Stokes multipliers, spectral determinants and T-Q relations. Sūrikaisekikenkyūsho Kōkyūroku (1221), 21–37 (2001). [Development in discrete integrable systems—ultra-discretization, quantization (Japanese) (Kyoto, 2000)]
Suzuki, J.: Elementary functions in thermodynamic Bethe ansatz. J. Phys. A Math. Theor. 48(20), 205204 (2015)
Zamolodchikov A.B.: On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories. Phys. Lett. B 253(3–4), 391–394 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Rights and permissions
About this article
Cite this article
Masoero, D., Raimondo, A. & Valeri, D. Bethe Ansatz and the Spectral Theory of Affine Lie algebra–Valued Connections II: The Non Simply–Laced Case. Commun. Math. Phys. 349, 1063–1105 (2017). https://doi.org/10.1007/s00220-016-2744-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-016-2744-2