Abstract
In this paper we construct new solutions of the Kähler–Yang–Mills equations, by applying dimensional reduction methods to the product of the complex projective line with a compact Riemann surface. The resulting equations, which we call gravitating vortex equations, describe abelian vortices on the Riemann surface with back reaction of the metric. As a particular case of these gravitating vortices on the Riemann sphere we find solutions of the Einstein–Bogomol’nyi equations, which physically correspond to Nielsen–Olesen cosmic strings in the Bogomol’nyi phase. We use this to provide a Geometric Invariant Theory interpretation of an existence result by Y. Yang for the Einstein–Bogomol’nyi equations, applying a criterion due to G. Székelyhidi.
This is a preview of subscription content, access via your institution.
References
Álvarez-Cónsul L., García-Fernández M., García-Prada O.: Coupled equations for Kähler metrics and Yang–Mills connections. Geom. Top. 17, 2731–2812 (2013)
Álvarez-Cónsul, L., García-Fernández, M., García-Prada, O.: Gravitating vortices and the Einstein–Bogomol’nyi equations. Preprint arXiv:1606.07699 [math.DG] (2016)
Atiyah M.F., Bott R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1983)
Bradlow S.: Vortices in Holomorphic Line Bundles Over Closed Kähler Manifolds. Commun. Math. Phys. 135, 1–17 (1990)
Chen X., Hastings S., McLeod J., Yang Y.: A nonlinear elliptic equation arising from gauge field theory and cosmology. Proc. R. Soc. Lond. Series. A 446, 453–458 (1994)
Comtet A., Gibbons G.: Bogomol’nyi bounds for cosmic strings. Nuc. Phys. B299, 719–733 (1988)
Donaldson S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom. 18, 269–277 (1983)
Donaldson S.K.: Anti-self-dual Yang–Mills connections on a complex algebraic surface and stable vector bundles. Proc. Lond. Math. Soc. 50, 1–26 (1985)
Donaldson S.K. : Remarks on gauge theory, complex geometry and 4-manifold topology. In: Atiyah, I. (eds) Fields Medallists’ Lectures, pp. 384–403. World Scientific, Singapore (1997)
Fujiki A.: Moduli space of polarized algebraic manifolds and Kähler metrics. Sugaku Expos. 5, 173–191 (1992)
Garcia-Fernandez, M.: Coupled equations for Kähler metrics and Yang–Mills connections. PhD Thesis. Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid. arXiv:1102.0985 [math.DG] (2009)
Garcia-Fernandez M., Tipler C.: Deformation of complex structures and the Coupled Kähler–Yang–Mills equations. J. Lond. Math. Soc. (2) 89, 779–796 (2013)
García-Prada O.: Invariant connections and vortices. Commun. Math. Phys. 156, 527–546 (1993)
García-Prada O.: A direct existence proof for the vortex equations over a compact Riemann surface. Bull. Lond. Math. Soc. 26, 88–96 (1994)
Gauduchon, P.: Calabi’s extremal Kähler metrics: an elementary introduction. (2015)
Ginzburg V.L., Landau L.D.: On the theory of superconductivity. Zh. Eksp. Theor. Fiz. 20, 1064 (1950)
Hartshorne R.: Ample vector bundles on curves. Nagoya Math. J. 43, 73–89 (1971)
Jaffe A.M., Taubes C.H.: Vortices and Monopoles: Structure of Static Gauge Theories. Birkhäuser, Boston (1980)
Kazdan J.L., Warner F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 14–47 (1978)
Keller J., Tonnesen-Friedman C.: Non trivial examples of coupled equations for Kähler metrics and Yang–Mills connections. Cent. Eur. J. Math. (5) 10, 1673–1687 (2012)
Kibble T.: Topology of cosmic domains and strings. J. Phys. A Math. Gen. 9, 1387 (1976)
LeBrun C., Simanca R.: Extremal Kähler metrics and complex deformation theory. Geometr. Funct. Anal. 4, 298–336 (1994)
Lichnerowicz, A.: Géometrie des groupes de transformation. Travaux et Recherches Mathématiques 3, Dunod (1958)
Linet B.: A vortex-line model for infinite straight cosmic strings in equilibrium. Phys. Lett. A 124, 240–242 (1987)
Linet B.: On the supermassive U(1) gauge cosmic strings. Class. Quantum Grav. 7, L75–L79 (1990)
Mumford D., Fogarty J., Kirwan F.: Geometric Invariant Theory, Third Enlarged Edition. Springer, Berlin (1994)
Narasimhan M.S., Seshadri C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. 82, 540–567 (1965)
Nielsen H.B., Olesen P.: Vortex-line models for dual strings. Nuclear Phys. B 61, 45–61 (1973)
Noguchi M.: Yang–Mills–Higgs theory on a compact Riemann surface. J. Math. Phys. 28, 2343–2346 (1987)
Spruck, J., Yang, Y.: Cosmic String solutions of the Einstein-matter-gauge equations. Research Report No. 92-NA-032, (1992) (unpublished).
Spruck J., Yang Y.: Regular stationary solutions of the cylindrically symmetric Einstein-matter-gauge equations. J. Math. Anal. Appl. 195, 160–190 (1995)
Székelyhidi G.: The Kähler-Ricci flow and K-polystability. Amer. J. Math. 132, 1077–1090 (2010)
Taubes C.H.: Arbitrary N-vortex solutions to the first order Ginzburg–Landau equations. Commun. Math. Phys. 72(3), 277–292 (1980)
Taubes C.H.: On the Equivalence of the First and Second Order Equations for Gauge Theories. Commun. Math. Phys. 75, 207–227 (1980)
Thomas, R.P.: Notes on GIT and symplectic reduction for bundles and varieties. In: Surveys in Differential Geometry 10: A Tribute to Professor S.-S. Chern. Preprint arXiv:math/0512411 (2006)
Tipler C., van Coevering C.: Deformations of constant scalar curvature Sasakian metrics and K-stability. Int. Math. Res. Not. 22, 11566–11604 (2015)
Uhlenbeck K.K., Yau S.-T.: On the existence of hermitian–Yang–Mills connections on stable bundles over compact Kähler manifolds. Commun. Pure and Appl. Math. 39-S, 257–293 (1986)
Uhlenbeck K.K., Yau S.-T.: On the existence of hermitian–Yang–Mills connections on stable bundles over compact Kähler manifolds. Commun. Pure Appl. Math. 42, 703–707 (1989)
Witten E.: Some exact multipseudoparticle solutions of classical Yang–Mills theory. Phys. Rev. Lett. 38, 121 (1977)
Yang Y.: An equivalence theorem for string solutions of the Einstein-matter-gauge equations. Lett. Math. Phys. 26, 79–90 (1992)
Yang Y.: Obstructions to the existence of static cosmic strings in an Abelian Higgs model. Phys. Rev. Lett. 73, 10–13 (1994)
Yang Y.: Self duality of the gauge field equations and the cosmological constant. Commun. Math. Phys. 162, 481–498 (1994)
Yang Y.: Prescribing topological defects for the coupled Einstein and Abelian Higgs equations. Commun. Math. Phys. 170, 541–582 (1994)
Yang Y.: Static cosmic strings on S 2 and criticality. Proc. R. Soc. Lond. A 453, 581–591 (1997)
Yang Y.: Solitons in Field Theory and Nonlinear Analysis. Springer, Berlin (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by X. Yin
Partially supported by the Spanish MINECO under the ICMAT Severo Ochoa Grant No. SEV-2011-0087, and under Grant No. MTM2013-43963-P. The work of the second author has been partially supported by the Nigel Hitchin Laboratory under the ICMAT Severo Ochoa Grant. The research leading to these results has received funding from the European Union’s Horizon 2020 Programme (H2020-MSCA-IF-2014) under Grant agreement No. 655162, and by the European Commission Marie Curie IRSES MODULI Programme PIRSES-GA-2013-612534.
Rights and permissions
About this article
Cite this article
Álvarez-Cónsul, L., Garcia-Fernandez, M. & García-Prada, O. Gravitating Vortices, Cosmic Strings, and the Kähler–Yang–Mills Equations. Commun. Math. Phys. 351, 361–385 (2017). https://doi.org/10.1007/s00220-016-2728-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-016-2728-2