Abstract
We prove the quantization of the Hall conductivity for general weakly interacting gapped fermionic systems on two-dimensional periodic lattices. The proof is based on fermionic cluster expansion techniques combined with lattice Ward identities, and on a reconstruction theorem that allows us to compute the Kubo conductivity as the analytic continuation of its imaginary time counterpart.
Similar content being viewed by others
References
Agazzi A., Eckmann J.-P., Graf G.M.: The colored Hofstadter butterfly for the honeycomb lattice. J. Stat. Phys. 156, 417–426 (2014)
Aizenman M., Graf G.M.: Localization bounds for an electron gas. J. Phys. A: Math. Gen. 31, 6783 (1998)
Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)
Avron J.E., Seiler R., Simon B.: Homotopy and quantization in condensed matter physics. Phys. Rev. Lett. 51, 51 (1983)
Avron, J., Seiler, R.: Why is the Hall conductance quantized? In: Open Problems in Mathematical Physics. Available at http://web.math.princeton.edu/~aizenman/OpenProblems.iamp
Avron J.E., Seiler R., Simon B.: Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)
Battle G.A., Federbush P.: A note on cluster expansions, tree graph identities, extra 1/N! factors!!!. Lett. Math. Phys. 8, 55–57 (1984)
Bellissard, J., van Els, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373 (1994)
Benfatto G., Mastropietro V.: On the density-density critical indices in interacting Fermi systems. Commun. Math. Phys. 231, 97–134 (2002)
Benfatto G., Mastropietro V.: Ward identities and chiral anomaly in the Luttinger liquid. Commun. Math. Phys. 258, 609–655 (2005)
Benfatto G., Mastropietro V.: Universality relations in non-solvable quantum spin chains. J. Stat. Phys. 138, 1084–1108 (2010)
Benfatto G., Falco P., Mastropietro V.: Universal relations for non solvable statistical models. Phys. Rev. Lett. 104, 075701 (2010)
Benfatto G., Falco P., Mastropietro V.: Universality of one-dimensional Fermi systems, I. Response functions and critical exponents. Commun. Math. Phys. 330, 153–215 (2014)
Benfatto G., Falco P., Mastropietro V.: Universality of one-dimensional Fermi systems, II. The Luttinger liquid structure. Commun. Math. Phys. 330, 217–282 (2014)
Benfatto G., Gallavotti G., Procacci A., Scoppola B.: Beta function and Schwinger functions for a many fermions system in one dimension. Anomaly of the Fermi surface. Commun. Math. Phys. 160, 93–171 (1994)
Bieri S., Fröhlich J.: Physical principles underlying the quantum Hall effect. Compt. Rend. Phys. 12, 332–346 (2011)
Bishop M., Nachtergaele B., Young A.: Spectral gap and edge excitations of d-dimensional PVBS models on half-spaces. J. Stat. Phys. 162(6), 1485–1521 (2016)
Bravyi S., Hastings M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609–627 (2011)
Bravyi S., Hastings M.B., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)
Bru, J.B., de S. Pedra,W.A.: Lieb-Robinson Bounds forMulti-Commutators andApplications to Response Theory. Springer Briefs in Mathematical Physics, vol. 13. Springer (2016)
Bru, J.B., de S. Pedra, W.A.: Universal bounds for large determinants from non-commutative Hölder inequalities in fermionic constructive quantum field theory. Preprint mp_arc 16-16
Brydges, D.C.: A short course on cluster expansions. In: Phénomènes critiques, systèmes aléatoires, théories de jauge (Les Houches, 1984), pp. 129–183. North-Holland, Amsterdam (1986)
Brydges D.C., Federbush P.: A new form of the Mayer expansion in classical statistical mechanics. J. Math. Phys. 19, 2064–2067 (1978)
Coleman S., Hill B.: No more corrections to the topological mass term in QED3. Phys. Lett. B. 159, 184 (1985)
Datta N., Fernández R., Fröhlich J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84, 455 (1996)
Datta N., Fernández R., Fröhlich J., Rey-Bellet L.: Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta. 69, 752 (1996)
Fröhlich J., Kerler T.: Universality in quantum Hall systems. Nucl. Phys. B. 354, 369–417 (1991)
Fröhlich J., Studer U.M.: Gauge invariance and current algebra in nonrelativistic many-body theory. Rev. Mod. Phys. 65, 733 (1993)
Fröhlich, J., Studer, U.M., Thiran, E.: Quantum Theory of Large Systems of Non-relativistic Matter. Les Houches Lectures 1994, Elsevier, New York (1995). arXiv:cond-mat/9508062
Fröhlich J., Zee A.: Large scale physics of the quantum Hall fluid. Nucl. Phys. B. 364, 517–540 (1991)
Gallavotti G.: Renormalization group and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57, 471–562 (1985)
Gallavotti G., Nicolò F.: Renormalization theory for four dimensional scalar fields, Part I. Commun. Math. Phys. 100, 545–590 (1985)
Gallavotti G., Nicolò F.: Renormalization theory for four dimensional scalar fields, Part II. Commun. Math. Phys. 101, 471–562 (1985)
Gentile G., Mastropietro V.: Renormalization group for one-dimensional fermions. A review on mathematical results. Phys. Rep. 352(4), 273–437 (2001)
Giuliani, A.: The ground state construction of the two-dimensional Hubbard model on the honeycomb lattice. In: Quantum Theory from Small to Large Scales. Lecture Notes of the Les Houches Summer School, vol. 95 (August 2010)
Giuliani A., Mastropietro V.: The 2D Hubbard model on the honeycomb lattice. Commun. Math. Phys. 293, 301–346 (2010)
Giuliani A., Mastropietro V., Porta M.: Universality of conductivity in interacting graphene. Commun. Math. Phys. 311, 317–355 (2012)
Giuliani A., Mastropietro V., Porta M.: Absence of interaction corrections in the optical conductivity of graphene. Phys. Rev. B 83, 195401 (2011)
Haldane F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988)
Hastings M.B., Michalakis S.: Quantization of Hall conductance for interacting electrons on a torus. Commun. Math. Phys. 334, 433–471 (2015)
Hofstadter D.R.: Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)
Ishikawa K., Matsuyama T.: Magnetic field induced multi-component QED3 and quantum Hall effect. Z. Phys C. 33, 41–45 (1986)
Jotzu G. et al.: Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014)
Katsura H., Koma T.: The \({\mathbb{Z}_{2}}\) index of disordered topological insulators with time reversal symmetry. J. Math. Phys. 57, 021903 (2016)
Kubo R.: Statistical-mechanical theory of irreversible processes, I. J. Phys. Soc. Jpn. 12, 570–586 (1957)
Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)
Mahan G.D.: Many-Particle Physics, 3rd edn. Kluwer/Plenum, New York (2010)
Mastropietro V.: Non-perturbative Renormalization. World Scientific, Singapore (2008)
Michalakis S., Zwolak J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013)
Nachtergaele B., Ogata Y., Sims R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)
Nachtergaele B., Sims R.: Lieb–Robinson bounds in quantum many-body physics. Contemp. Math. 529, 141–176 (2010)
de S. Pedra W.A., Salmhofer M.: Determinant bounds and the Matsubara UV problem of many-fermion systems. Commun. Math. Phys. 282, 797–818 (2008)
Stauber T., Peres N.M.R., Geim A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008)
Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)
Varney C.N., Sun K., Rigol M., Galitski V.: Topological phase transitions for interacting finite systems. Phys. Rev. B. 84, 241105 (2011)
von Klitzing, K., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980)
Wen X.G.: Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B. 41, 12838–12844 (1990)
Zhang S.-C.: The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B. 6, 25–58 (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Salmhofer
Rights and permissions
About this article
Cite this article
Giuliani, A., Mastropietro, V. & Porta, M. Universality of the Hall Conductivity in Interacting Electron Systems. Commun. Math. Phys. 349, 1107–1161 (2017). https://doi.org/10.1007/s00220-016-2714-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-016-2714-8