Skip to main content
Log in

Controlled Topological Phases and Bulk-edge Correspondence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a variation of the notion of topological phase reflecting metric structure of the position space. This framework contains not only periodic and non-periodic systems with symmetries in Kitaev’s periodic table but also topological crystalline insulators. We also define the bulk and edge indices as invariants taking values in the twisted equivariant K-groups of Roe algebras as generalizations of existing invariants such as the Hall conductance or the Kane–Mele \({\mathbb{Z}_2}\)-invariant. As a consequence, we obtain a new mathematical proof of the bulk-edge correspondence by using the coarse Mayer-Vietoris exact sequence. As a new example, we study the index of reflection-invariant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M., Segal G.: Equivariant K-theory and completion. J. Differ. Geom. 3, 1–18 (1969)

    MathSciNet  MATH  Google Scholar 

  2. Avila J.C., Schulz-Baldes H., Villegas-Blas C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16(2), 137–170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altland A., Zirnbauer M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B. 55(2), 1142 (1997)

    Article  ADS  Google Scholar 

  4. Bourne C., Carey A.L., Rennie A.: A noncommutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellissard, J.: The noncommutative geometry of aperiodic solids, Geometric and topological methods for quantum field theory (Villa de Leyva, 2001). World Sci. Publ. 86–156 (2003)

  6. Bellissard, J.: K-theory of C*-algebras in solid state physics, statistical mechanics and field theory: mathematical aspects (Groningen, 1985). pp. 99–156, Springer, Berlin (1986)

  7. Bellissard, J.: Ordinary quantum Hall effect and noncommutative cohomology, localization in disordered systems (Bad Schandau, 1986). pp. 61–74, Teubner, Leipzig (1988)

  8. Bellissard, J.: Gap labelling theorems for Schrödinger operators, From number theory to physics (Les Houches, 1989), pp. 538–630. Springer, Berlin (1992)

  9. Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labeling theorems, directions in mathematical quasicrystals. Amer. Math. Soc. 207–258 (2000)

  10. Bellissard J., Kellendonk J., Legrand A.: Gap-labelling for three-dimensional aperiodic solids. C. R. Acad. Sci. Paris Sér. I Math. 332(6), 521–525 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Boersema, J.L., Loring, T.A.: K-theory for Real C*-algebras via Unitary Elements with Symmetries, preprint, arXiv:1504.03284 [math.OA], 2015

  12. Blackadar B.: K-theory for operator algebras, Second, Mathematical Sciences Research Institute Publications, vol 5. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  13. Brodzki J., Niblo G.A., Wright N.J.: Property A, partial translation structures, and uniform embeddings in groups. J. Lond. Math. Soc. (2) 76(2), 479–497 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994) Topology and physics

  15. Chen X., Fu B.: Non-commutative Fejer theorems. Integral Equ. Oper. Theor. 74(3), 301–312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carey A., Hannabuss K., Mathai V.: Quantum Hall effect on the hyperbolic plane in the presence of disorder. Lett. Math. Phys. 47(3), 215–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carey A.L., Hannabuss K.C., Mathai V., McCann P.: Quantum Hall effect on the hyperbolic plane. Comm. Math. Phys. 190(3), 629–673 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Connes A.: Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985)

    Article  MathSciNet  Google Scholar 

  19. Connes, A.: Noncommutative geometry, Academic Press, Inc., San Diego, CA (1994)

  20. Chiu C.-K., Yao H., Ryu S.: Classification of topological insulators and superconductors in the presence of reflection symmetry. Phys. Rev. B 88, 075142 (2013)

    Article  ADS  Google Scholar 

  21. De Nittis G., Gomi K.: Classification of “real” Bloch-bundles: topological quantum systems of type aii. J. Geom. Phys. 86, 303–338 (2014)

    Article  ADS  MATH  Google Scholar 

  22. De Nittis, G., Gomi, K.: Chiral vector bundles: A geometric model for class AIII topological quantum systems, preprint, arXiv:1504.04863 [math-ph], (2015)

  23. De Nittis G., Gomi K.: Classification of “quaternionic” Bloch-bundles: topological quantum systems of type aii, Comm. Math. Phys. 339(1), 1–55 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  25. Freed D.S., Moore G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Fu L.: Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011)

    Article  ADS  Google Scholar 

  27. Graf G.M., Graf G.M., Graf G.M.: Bulk-edge correspondence for two-dimensional topological insulators. Comm. Math. Phys. 324(3), 851–895 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Großann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators, Communications in Mathematical Physics. 1–37 (2015)

  29. Hatsugai Y.: Edge states in the integer quantum hall effect and the riemann surface ofthe bloch function. Phys. Rev. B 48, 11851–11862 (1993)

    Article  ADS  Google Scholar 

  30. Higson, N., Kasparov, G.G.: Operator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc. 3, 131–142 (1997) (electronic)

  31. Hannabus, K., Mathai, V., Thiang, G.: T-duality trivializes bulk-boundary correspondence: the parametrised case, preprint, arXiv:1510.04785 [hep-th], (2015)

  32. Higson N., Roe J.: Analytic K-homology Oxford mathematical monographs. Oxford University Press, Oxford Science Publications, Oxford (2000)

    MATH  Google Scholar 

  33. Higson, N., Roe, J.: On the coarse Baum-Connes conjecture, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993). pp. 227–254, Cambridge Univ. Press, Cambridge (1995)

  34. Higson N., Roe J., Yu G.: A coarse Mayer-Vietoris principle. Math. Proc. Cambridge Philos. Soc. 114(1), 85–97 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Kasparov, G.G.: The operator K-functor and extensions of C*-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44(3), 571–636 (1980) 719

  36. Kellendonk, J.: On the C*-algebraic approach to topological phases for insulators, preprint, arXiv:1509.06271 [math.KT], (2015)

  37. Kitaev A.Y.: Unpaired majorana fermions in quantum wires. Physics-Uspekhi 44(10S), 131 (2001)

    Article  ADS  Google Scholar 

  38. Kitaev, A.: Periodic table for topological insulators and superconductors, AIP Conference Proceedings 1134(1) (2009)

  39. Katsura H., Koma T.: The \({\mathbb{Z}_{2}}\) index of disordered topological insulators with time reversal symmetry. J. Math.Phys. 57, 021903 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kane C.L., Mele E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  41. Kellendonk J., Richter T., Schulz-Baldes H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(1), 87–119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kellendonk J., Schulz-Baldes H.: Boundary maps for C*-crossed products with \({\mathbb{R}}\) with an application to the quantum Hall effect. Comm. Math. Phys. 249(3), 611–637 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kubota, Y.: Notes on twisted equivariant K-theory for C*-algebras, preprint arXiv:1511.05312 [math.KT], (2015)

  44. Kucerovsky D.: The KK-product of unbounded modules. K-Theory 11(1), 17–34 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lance, E.C.: Hilbert C*-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge (1995). (A toolkit for operator algebraists)

  46. Lawson H.B., Michelsohn M.-L.: Spin geometry, Princeton Mathematical Series, vol 38. Princeton University Press, Princeton (1989)

    Google Scholar 

  47. Moore J.E., Balents L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007)

    Article  ADS  Google Scholar 

  48. Morimoto T., Furusaki A.: Topological classification with additional symmetries from Clifford algebras. Phys. Rev. B 88, 125129 (2013)

    Article  ADS  Google Scholar 

  49. Mathai V., Thiang G.C.: T-duality of topological insulators. J. Phys A: Math Theor 48(42), 42FT02 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mathai, V., Thiang, G.: T-duality trivializes bulk-boundary correspondence, preprint, arXiv:1505.05250 [hep-th], (2015)

  51. Mathai, V., Thiang, G.: T-duality trivializes bulk-boundary correspondence: some higher dimen- sional cases, preprint, arXiv:1506.04492 [hep-th], (2015)

  52. Oliver R.K.: On Bieberbach’s analysis of discrete Euclidean groups. Proc. Amer. Math. Soc. 80(1), 15–21 (1980)

    MathSciNet  MATH  Google Scholar 

  53. Packer J.A., Raeburn I.: Twisted crossed products of C* -algebras. Math. Proc. Cambridge Philos. Soc. 106(2), 293–311 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Prodan, E.: An edge index for the quantum spin-Hall effect. J. Phys. A 42(8), 082001 (2009) (11)

  55. Prodan, E.: The edge spectrum of Chern insulators with rough boundaries, J. Math. Phys. 50(8), 083517, (2009) (18)

  56. Prodan, E.V.: Intrinsic Chern-Connes characters for crossed products by \({\mathbb{Z}^{d}}\), preprint, arXiv:1501.03479 [math-ph], 2015

  57. Prodan, E., Schulz-Baldes, H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems, preprint, arXiv:1402.5002 [math-ph], (2014)

  58. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Inslators: From K-theory to Physics. Springer, Springer International Publishing, Berlin (2016)

  59. Pimsner M., Voiculescu D.: Exact sequences for K-groups and Ext-groups of certain cross-product C* -algebras. J. Oper. Theor. 4(1), 93–118 (1980)

    MathSciNet  MATH  Google Scholar 

  60. Rieffel M.A.: Strong Morita equivalence of certain transformation group C*- algebras. Math. Ann. 222(1), 7–22 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  61. Roe J.: Comparing analytic assembly maps. Q. J. Math. 53(2), 241–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Roe J.: Lectures on coarse geometry University Lecture Series, vol 31. Am. Math. Soc. (2003)

  63. Roe J.: Band-dominated Fredholm operators on discrete groups. Integral Equations Operator Theory 51(3), 411–416 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. Roe J.: An index theorem on open manifolds. I, II, J. Differential Geom. 27(1):87–113, 115–136 (1988)

  65. Roe J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104(497), x+90 (1993)

    MathSciNet  MATH  Google Scholar 

  66. Roe J.: Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society (1996)

  67. Špalula, J.: K-theory of uniform Roe algebras, PhD thesis (2008)

  68. Serre, J.-P.: Linear representations of finite groups, Springer-Verlag, New York-Heidelberg. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42, (1977)

  69. Shan L.: An equivariant higher index theory and nonpositively curved manifolds. J. Funct. Anal. 255(6), 1480–1496 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. Siegel, P.: The Mayer-Vietoris sequence for the Analytic Structure Group, preprint, arXiv:1212.0241 [math.KT], (2012)

  71. Skandalis G., Tu J.L., Yu G.: The coarse Baum-Connes conjecture and groupoids. Topology 41(4), 807–834 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  72. Thiang, G.C.: On the K-theoretic classification of topological phases of matter, Ann. Henri Poincaré, 1—38, (2015)

  73. Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett 49, 405 (1982)

    Article  ADS  Google Scholar 

  74. Wigner, E.P.: Group theory and its application to the quantum mechanics of atomic spectra, Expanded and improved ed. Translated from the German by J. J. Griffin. Pure and Applied Physics. Vol. 5, Academic Press, New York-London, (1959)

  75. Yu G.: K-theoretic indices of Dirac type operators on complete manifolds and the Roe algebra. K-Theory 11(1), 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  76. Yu G.: Localization algebras and the coarse Baum-Connes conjecture. K-Theory 11(4), 307–318 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Kubota.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, Y. Controlled Topological Phases and Bulk-edge Correspondence. Commun. Math. Phys. 349, 493–525 (2017). https://doi.org/10.1007/s00220-016-2699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2699-3

Navigation