Abstract
In this paper, we introduce a variation of the notion of topological phase reflecting metric structure of the position space. This framework contains not only periodic and non-periodic systems with symmetries in Kitaev’s periodic table but also topological crystalline insulators. We also define the bulk and edge indices as invariants taking values in the twisted equivariant K-groups of Roe algebras as generalizations of existing invariants such as the Hall conductance or the Kane–Mele \({\mathbb{Z}_2}\)-invariant. As a consequence, we obtain a new mathematical proof of the bulk-edge correspondence by using the coarse Mayer-Vietoris exact sequence. As a new example, we study the index of reflection-invariant systems.
Similar content being viewed by others
References
Atiyah M., Segal G.: Equivariant K-theory and completion. J. Differ. Geom. 3, 1–18 (1969)
Avila J.C., Schulz-Baldes H., Villegas-Blas C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16(2), 137–170 (2013)
Altland A., Zirnbauer M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B. 55(2), 1142 (1997)
Bourne C., Carey A.L., Rennie A.: A noncommutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)
Bellissard, J.: The noncommutative geometry of aperiodic solids, Geometric and topological methods for quantum field theory (Villa de Leyva, 2001). World Sci. Publ. 86–156 (2003)
Bellissard, J.: K-theory of C*-algebras in solid state physics, statistical mechanics and field theory: mathematical aspects (Groningen, 1985). pp. 99–156, Springer, Berlin (1986)
Bellissard, J.: Ordinary quantum Hall effect and noncommutative cohomology, localization in disordered systems (Bad Schandau, 1986). pp. 61–74, Teubner, Leipzig (1988)
Bellissard, J.: Gap labelling theorems for Schrödinger operators, From number theory to physics (Les Houches, 1989), pp. 538–630. Springer, Berlin (1992)
Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labeling theorems, directions in mathematical quasicrystals. Amer. Math. Soc. 207–258 (2000)
Bellissard J., Kellendonk J., Legrand A.: Gap-labelling for three-dimensional aperiodic solids. C. R. Acad. Sci. Paris Sér. I Math. 332(6), 521–525 (2001)
Boersema, J.L., Loring, T.A.: K-theory for Real C*-algebras via Unitary Elements with Symmetries, preprint, arXiv:1504.03284 [math.OA], 2015
Blackadar B.: K-theory for operator algebras, Second, Mathematical Sciences Research Institute Publications, vol 5. Cambridge University Press, Cambridge (1998)
Brodzki J., Niblo G.A., Wright N.J.: Property A, partial translation structures, and uniform embeddings in groups. J. Lond. Math. Soc. (2) 76(2), 479–497 (2007)
Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994) Topology and physics
Chen X., Fu B.: Non-commutative Fejer theorems. Integral Equ. Oper. Theor. 74(3), 301–312 (2012)
Carey A., Hannabuss K., Mathai V.: Quantum Hall effect on the hyperbolic plane in the presence of disorder. Lett. Math. Phys. 47(3), 215–236 (1999)
Carey A.L., Hannabuss K.C., Mathai V., McCann P.: Quantum Hall effect on the hyperbolic plane. Comm. Math. Phys. 190(3), 629–673 (1998)
Connes A.: Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985)
Connes, A.: Noncommutative geometry, Academic Press, Inc., San Diego, CA (1994)
Chiu C.-K., Yao H., Ryu S.: Classification of topological insulators and superconductors in the presence of reflection symmetry. Phys. Rev. B 88, 075142 (2013)
De Nittis G., Gomi K.: Classification of “real” Bloch-bundles: topological quantum systems of type aii. J. Geom. Phys. 86, 303–338 (2014)
De Nittis, G., Gomi, K.: Chiral vector bundles: A geometric model for class AIII topological quantum systems, preprint, arXiv:1504.04863 [math-ph], (2015)
De Nittis G., Gomi K.: Classification of “quaternionic” Bloch-bundles: topological quantum systems of type aii, Comm. Math. Phys. 339(1), 1–55 (2015)
Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)
Freed D.S., Moore G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)
Fu L.: Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011)
Graf G.M., Graf G.M., Graf G.M.: Bulk-edge correspondence for two-dimensional topological insulators. Comm. Math. Phys. 324(3), 851–895 (2013)
Großann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators, Communications in Mathematical Physics. 1–37 (2015)
Hatsugai Y.: Edge states in the integer quantum hall effect and the riemann surface ofthe bloch function. Phys. Rev. B 48, 11851–11862 (1993)
Higson, N., Kasparov, G.G.: Operator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc. 3, 131–142 (1997) (electronic)
Hannabus, K., Mathai, V., Thiang, G.: T-duality trivializes bulk-boundary correspondence: the parametrised case, preprint, arXiv:1510.04785 [hep-th], (2015)
Higson N., Roe J.: Analytic K-homology Oxford mathematical monographs. Oxford University Press, Oxford Science Publications, Oxford (2000)
Higson, N., Roe, J.: On the coarse Baum-Connes conjecture, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993). pp. 227–254, Cambridge Univ. Press, Cambridge (1995)
Higson N., Roe J., Yu G.: A coarse Mayer-Vietoris principle. Math. Proc. Cambridge Philos. Soc. 114(1), 85–97 (1993)
Kasparov, G.G.: The operator K-functor and extensions of C*-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44(3), 571–636 (1980) 719
Kellendonk, J.: On the C*-algebraic approach to topological phases for insulators, preprint, arXiv:1509.06271 [math.KT], (2015)
Kitaev A.Y.: Unpaired majorana fermions in quantum wires. Physics-Uspekhi 44(10S), 131 (2001)
Kitaev, A.: Periodic table for topological insulators and superconductors, AIP Conference Proceedings 1134(1) (2009)
Katsura H., Koma T.: The \({\mathbb{Z}_{2}}\) index of disordered topological insulators with time reversal symmetry. J. Math.Phys. 57, 021903 (2016)
Kane C.L., Mele E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)
Kellendonk J., Richter T., Schulz-Baldes H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(1), 87–119 (2002)
Kellendonk J., Schulz-Baldes H.: Boundary maps for C*-crossed products with \({\mathbb{R}}\) with an application to the quantum Hall effect. Comm. Math. Phys. 249(3), 611–637 (2004)
Kubota, Y.: Notes on twisted equivariant K-theory for C*-algebras, preprint arXiv:1511.05312 [math.KT], (2015)
Kucerovsky D.: The KK-product of unbounded modules. K-Theory 11(1), 17–34 (1997)
Lance, E.C.: Hilbert C*-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge (1995). (A toolkit for operator algebraists)
Lawson H.B., Michelsohn M.-L.: Spin geometry, Princeton Mathematical Series, vol 38. Princeton University Press, Princeton (1989)
Moore J.E., Balents L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007)
Morimoto T., Furusaki A.: Topological classification with additional symmetries from Clifford algebras. Phys. Rev. B 88, 125129 (2013)
Mathai V., Thiang G.C.: T-duality of topological insulators. J. Phys A: Math Theor 48(42), 42FT02 (2015)
Mathai, V., Thiang, G.: T-duality trivializes bulk-boundary correspondence, preprint, arXiv:1505.05250 [hep-th], (2015)
Mathai, V., Thiang, G.: T-duality trivializes bulk-boundary correspondence: some higher dimen- sional cases, preprint, arXiv:1506.04492 [hep-th], (2015)
Oliver R.K.: On Bieberbach’s analysis of discrete Euclidean groups. Proc. Amer. Math. Soc. 80(1), 15–21 (1980)
Packer J.A., Raeburn I.: Twisted crossed products of C* -algebras. Math. Proc. Cambridge Philos. Soc. 106(2), 293–311 (1989)
Prodan, E.: An edge index for the quantum spin-Hall effect. J. Phys. A 42(8), 082001 (2009) (11)
Prodan, E.: The edge spectrum of Chern insulators with rough boundaries, J. Math. Phys. 50(8), 083517, (2009) (18)
Prodan, E.V.: Intrinsic Chern-Connes characters for crossed products by \({\mathbb{Z}^{d}}\), preprint, arXiv:1501.03479 [math-ph], 2015
Prodan, E., Schulz-Baldes, H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems, preprint, arXiv:1402.5002 [math-ph], (2014)
Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Inslators: From K-theory to Physics. Springer, Springer International Publishing, Berlin (2016)
Pimsner M., Voiculescu D.: Exact sequences for K-groups and Ext-groups of certain cross-product C* -algebras. J. Oper. Theor. 4(1), 93–118 (1980)
Rieffel M.A.: Strong Morita equivalence of certain transformation group C*- algebras. Math. Ann. 222(1), 7–22 (1976)
Roe J.: Comparing analytic assembly maps. Q. J. Math. 53(2), 241–248 (2002)
Roe J.: Lectures on coarse geometry University Lecture Series, vol 31. Am. Math. Soc. (2003)
Roe J.: Band-dominated Fredholm operators on discrete groups. Integral Equations Operator Theory 51(3), 411–416 (2005)
Roe J.: An index theorem on open manifolds. I, II, J. Differential Geom. 27(1):87–113, 115–136 (1988)
Roe J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104(497), x+90 (1993)
Roe J.: Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society (1996)
Špalula, J.: K-theory of uniform Roe algebras, PhD thesis (2008)
Serre, J.-P.: Linear representations of finite groups, Springer-Verlag, New York-Heidelberg. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42, (1977)
Shan L.: An equivariant higher index theory and nonpositively curved manifolds. J. Funct. Anal. 255(6), 1480–1496 (2008)
Siegel, P.: The Mayer-Vietoris sequence for the Analytic Structure Group, preprint, arXiv:1212.0241 [math.KT], (2012)
Skandalis G., Tu J.L., Yu G.: The coarse Baum-Connes conjecture and groupoids. Topology 41(4), 807–834 (2002)
Thiang, G.C.: On the K-theoretic classification of topological phases of matter, Ann. Henri Poincaré, 1—38, (2015)
Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett 49, 405 (1982)
Wigner, E.P.: Group theory and its application to the quantum mechanics of atomic spectra, Expanded and improved ed. Translated from the German by J. J. Griffin. Pure and Applied Physics. Vol. 5, Academic Press, New York-London, (1959)
Yu G.: K-theoretic indices of Dirac type operators on complete manifolds and the Roe algebra. K-Theory 11(1), 1–15 (1997)
Yu G.: Localization algebras and the coarse Baum-Connes conjecture. K-Theory 11(4), 307–318 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Rights and permissions
About this article
Cite this article
Kubota, Y. Controlled Topological Phases and Bulk-edge Correspondence. Commun. Math. Phys. 349, 493–525 (2017). https://doi.org/10.1007/s00220-016-2699-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-016-2699-3