Communications in Mathematical Physics

, Volume 346, Issue 1, pp 75–113 | Cite as

Knots, BPS States, and Algebraic Curves

  • Stavros Garoufalidis
  • Piotr Kucharski
  • Piotr Sułkowski
Article

Abstract

We analyze relations between BPS degeneracies related to Labastida-Mariño-Ooguri-Vafa (LMOV) invariants and algebraic curves associated to knots. We introduce a new class of such curves, which we call extremal A-polynomials, discuss their special properties, and determine exact and asymptotic formulas for the corresponding (extremal) BPS degeneracies. These formulas lead to nontrivial integrality statements in number theory, as well as to an improved integrality conjecture, which is stronger than the known M-theory integrality predictions. Furthermore, we determine the BPS degeneracies encoded in augmentation polynomials and show their consistency with known colored HOMFLY polynomials. Finally, we consider refined BPS degeneracies for knots, determine them from the knowledge of super-A-polynomials, and verify their integrality. We illustrate our results with twist knots, torus knots, and various other knots with up to 10 crossings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGSF12.
    Awata, H., Gukov, S., Sulkowski, P., Fuji, H.: Volume conjecture: refined and categorified. Adv.Theor.Math.Phys., 16, 1669–1777 (2012). arXiv:1203.2182
  2. AKV02.
    Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1–28 (2002). arXiv:hep-th/0105045
  3. AM98.
    Aiston A.K., Morton H.R.: Idempotents of Hecke algebras of type A. J. Knot Theory Ramifications 7(4), 463–487 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. AV00.
    Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs (2000), arXiv:hep-th/0012041
  5. AV12.
    Aganagic, M., Vafa, C.: Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots (2012). arXiv:1204.4709
  6. BE12.
    Borot, G., Eynard, B.: All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials (2012). arXiv:1205.2261
  7. BEM12.
    Brini A., Eynard B., Mariño M.: Torus knots and mirror symmetry. Ann. Henri Poincaré 13(8), 1873–1910 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. Beu10.
    Beukers F.: Algebraic A-hypergeometric functions. Invent. Math. 180(3), 589–610 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. BH89.
    Beukers F., Heckman G.: Monodromy for the hypergeometric function \({_nF_{n-1}}\). Invent. Math. 95(2), 325–354 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. CCG+94.
    Cooper D., Culler M., Gillet H., Long D.D., Shalen P.B.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118(1), 47–84 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. CDGS14.
    Chung H.-J., Dimofte T., Gukov S., Sulkowski P.: 3d-3d Correspondence Revisited. JHEP 1604, 140 (2016)ADSCrossRefGoogle Scholar
  12. CKK14.
    Choi, J., Katz, S., Klemm, A.: The refined BPS index from stable pair invariants. Commun.Math.Phys., 328, 903–954 (2014). arXiv:1210.4403
  13. DF09.
    Dijkgraaf R., Fuji H.: The volume conjecture and topological strings. Fortschr. Phys. 57(9), 825–856 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. DFM11.
    Dijkgraaf R., Fuji H., Manabe M.: The volume conjecture, perturbative knot invariants, and recursion relations for topological strings. Nuclear Phys. B 849(1), 166–211 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. DGG14.
    Dimofte T., Gaiotto D., Gukov S.: Gauge theories labelled by three-manifolds. Comm. Math. Phys. 325(2), 367–419 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. DGR06.
    Dunfield N.M., Gukov S., Rasmussen J.: The superpolynomial for knot homologies. Experiment. Math. 15(2), 129–159 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. DSV13.
    Diaconescu, D.E., Shende, V., Vafa, C.: Large N duality, lagrangian cycles, and algebraic knots. Commun.Math.Phys., 319, 813–863 (2013). arXiv:1111.6533
  18. FGS13.
    Fuji, Hiroyuki, Gukov, Sergei, Sulkowski, Piotr: Super-A-polynomial for knots and BPS states. Nucl. Phys. B, 867, 506 (2013). arXiv:1205.1515
  19. FGSS13.
    Fuji, H., Gukov, S., Sulkowski, P., Stosic, M.: 3d analogs of Argyres-Douglas theories and knot homologies. JHEP, 01, 175 (2013). arXiv:1209.1416
  20. FS15.
    Fuji, H., Sulkowski, P.: Super-A-polynomial. Proceedings of Symposia in Pure Mathematics, 90, 277 (2015). arXiv:1303.3709
  21. Gar04.
    Garoufalidis, S.: On the characteristic and deformation varieties of a knot. Geom. Topol. Monogr. 7:291–304 (2004). arXiv:math/0306230
  22. Gar11a.
    Garoufalidis, Stavros: The degree of a q-holonomic sequence is a quadratic quasi-polynomial. Electron. J. Combin., 18(2):Paper 4, 23 (2011)Google Scholar
  23. Gar11b.
    Garoufalidis, S.: What is a sequence of Nilsson type?. In: Interactions between hyperbolic geometry, quantum topology and number theory, volume 541 of Contemp. Math., pp. 145–157. Amer. Math. Soc., Providence, RI (2011)Google Scholar
  24. GGS13.
    Gorsky, E., Gukov, S., Stosic, M.: Quadruply-graded colored homology of knots (2013). arXiv:1304.3481
  25. GJKS15.
    Gu, J., Hans, J., Albrecht, K., Masoud S.: Knot invariants from topological recursion on augmentation varieties. Commun. Math. Phys. 336(2), 987–1051 (2015). arXiv:1401.5095
  26. GL05.
    Garoufalidis, S., Lê, Thang, T.Q.: The colored Jones function is q-holonomic. Geom. Topol., 9, 1253–1293 (2005) (electronic)Google Scholar
  27. GLL.
    Garoufalidis, S., Lauda, A.D., Lê, T.T.Q.: The colored HOMFLY-PT polynomial is q-holonomic. Preprint (2016)Google Scholar
  28. GS11.
    Gukov S., Stosic M.: Homological algebra of knots and BPS states. Geom. Topol. Monographs 18, 309–367 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. GS12.
    Gukov, S., Sulkowski, P.: A-polynomial, B-model, and Quantization. JHEP, 1202, 070 (2012), arXiv:1108.0002
  30. Guk05.
    Gukov S.: Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Comm. Math. Phys. 255(3), 577–627 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. Hik04.
    Hikami, K.: Difference equation of the colored Jones polynomial for torus knot. Internat. J. Math., 15, 959–965 (2004). arXiv:math/0403224
  32. HKP13.
    Huang, M.X., Klemm, A., Poretschkin, M.: Refined stable pair invariants for E-, M- and [p, q]-strings. JHEP, 1311, 112 (2013). arXiv:1308.0619
  33. IMMM12.
    Itoyama H., Mironov A., Morozov A., Morozov An.: HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations. JHEP 1207, 131 (2012)ADSMathSciNetCrossRefGoogle Scholar
  34. JKS14.
    Jockers, H., Klemm, A., Soroush, M.: Torus Knots and the Topological Vertex. Lett.Math.Phys., 104, 953–989 (2014). arXiv:1212.0321Google Scholar
  35. Kon.
    Maxim Kontsevich. Private communicationGoogle Scholar
  36. KR14.
    Kassel C., Reutenauer C.: Algebraicity of the zeta function associated to a matrix over a free group algebra. Algebra Number Theory 8(2), 497–511 (2014)MathSciNetCrossRefMATHGoogle Scholar
  37. KSV06.
    Kontsevich M., Schwarz A., Vologodsky V.: Integrality of instanton numbers and p-adic B-model. Phys. Lett. B 637(1–2), 97–101 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. LM01.
    Labastida J.M.F., Mariño M.: Polynomial invariants for torus knots and topological strings. Comm. Math. Phys. 217(2), 423–449 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. LM02.
    José M.F.: Labastida and Marcos Mariño. A new point of view in the theory of knot and link invariants. J. Knot Theory Ramifications 11(2), 173–197 (2002)Google Scholar
  40. LMV00.
    Labastida, J., Mariño, M.F., Marcos, V.C: Knots, links and branes at large N. J. High Energy Phys., (11):Paper 7, 42 (2000)Google Scholar
  41. MS15.
    Mulase, M., Sulkowski, P.: Spectral curves and the Schrdinger equations for the Eynard-Orantin recursion. Adv. Theor. Math. Phys., 19, 955–1015 (2015). arXiv:1210.3006Google Scholar
  42. Ng08.
    Ng L.: Framed knot contact homology. Duke Math. J. 141(2), 365–406 (2008)MathSciNetCrossRefMATHGoogle Scholar
  43. Ng11.
    Ng L.: Combinatorial knot contact homology and transverse knots. Adv. Math. 227(6), 2189–2219 (2011)MathSciNetCrossRefMATHGoogle Scholar
  44. NRZ13.
    Nawata, S., Ramadevi, P.Z.: Colored HOMFLY polynomials from Chern-Simons theory. J.Knot Theor., 22, 1350078 (2013). arXiv:1302.5144
  45. NRZS12.
    Nawata, S., Ramadevi, P., Zodinmawia, S.X.: Super-A-polynomials for twist knots. J. High Energy Phys., (11):157, front matter + 38 (2012)Google Scholar
  46. OV00.
    Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419–438 (2000). arXiv:hep-th/9912123
  47. RS01.
    Ramadevi, P., Sarkar, T.: On link invariants and topological string amplitudes. Nucl. Phys. B 600, 487–511 (2001). arXiv:hep-th/0009188
  48. SV09.
    Schwarz A., Vologodsky V.: Integrality theorems in the theory of topological strings. Nuclear Phys. B 821(3), 506–534 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  49. VdV.
    Roland Van der V.: The degree of the colored HOMFLY polynomial (2010). arXiv:1501.00123 Preprint
  50. Vol07.
    Vologodsky, V.: Integrality of instanton numbers (2007). arXiv:0707.4617
  51. Wed.
    Wedrich, P.: q-holonomic formulas for colored homfly polynomials of 2-bridge links (2014). arXiv:1410.3769 (Preprint)
  52. Zei06.
    Zeidler, E.: Quantum field theory. I. Basics in mathematics and physics. Springer-Verlag, Berlin (2006). A bridge between mathematicians and physicistsGoogle Scholar
  53. ZR12.
    Zodinmawia, R.P.: Reformulated invariants for non-torus knots and links (2012). arXiv:1209.1346
  54. ZR13.
    Zodinmawia, R.P.: SU(N) quantum Racah coefficients and non-torus links. Nucl. Phys., B 870, 205–242 (2013). arXiv:1107.3918

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stavros Garoufalidis
    • 1
  • Piotr Kucharski
    • 2
  • Piotr Sułkowski
    • 2
    • 3
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations