Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory

Abstract

We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin–Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.

References

  1. 1

    Bahns D., Rejzner K., Zahn J.: The effective theory of strings. Commun. Math. Phys. 327(3), 779–814 (2014)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Barnich G., Brandt F., Henneaux M.: General solution of the Wess–Zumino consistency condition for Einstein gravity. Phys. Rev. D 51, R1435–R1439 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Batalin I.A., Vilkovisky G.A.: Relativistic S matrix of dynamical systems with boson and fermion constraints. Phys. Lett. 69B, 309 (1977)

    ADS  Article  Google Scholar 

  4. 4

    Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. 102, 27 (1981)

    MathSciNet  Article  Google Scholar 

  5. 5

    Becchi C., Rouet A., Stora R.: Renormalization of the Abelian Higgs–Kibble model. Commun. Math. Phys. 42, 127 (1975)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Becchi C., Rouet A., Stora R.: Renormalization of Gauge theories. Ann. Phys. 98, 287 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Bergmann P.G.: Observables in general relativity. Rev. Modern Phys. 33, 510 (1961)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Bergmann P.G., Komar A.: Poisson brackets between locally defined observables in general relativity. Phys. Rev. Lett 4, 432 (1960)

    ADS  Article  Google Scholar 

  9. 9

    Benini M., Dappiaggi C., Murro S.: Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 67, 084033 (2003) [Erratum: Phys. Rev. D 71, 069903 (2005)]

  11. 11

    Bogoliubov N.N., Shirkov D.V.: Introduction to the Theory of Quantized Fields. Interscience Publishers, Inc., New York (1959)

    Google Scholar 

  12. 12

    Brennecke F., Dütsch M.: Removal of violations of the Master Ward Identity in perturbative QFT. Rev. Math. Phys. 20, 119–172 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Brown J.D., Kuchař K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51, 5600 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009). arXiv:0901.2038v2 [math-ph]

  15. 15

    Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. In: Fauser, B. et al. (eds.) Proceedings of Workshop on Mathematical and Physical Aspects of Quantum Gravity, Blaubeuren, Germany, 28 Jul–1 Aug 2005. Quantum Gravity, pp. 151–159. arXiv:gr-qc/0603079v3

  17. 17

    Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Brunetti, R., Fredenhagen, K., Lauridsen-Ribeiro, P.: Algebraic structure of classical field theory I: kinematics and linearized dynamics for real scalar fields. arXiv:1209.2148v2 [math-ph]

  19. 19

    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. 20

    Baulieu L., Thierry-Mieg J.: Algebraic structure of quantum gravity and the classification of the gravitational anomalies. Phys. Lett. 145, 53–60 (1984)

    MathSciNet  Article  Google Scholar 

  21. 21

    Coley A., Hervik S., Pelavas N.: Spacetimes characterized by their scalar curvature invariants. Class. Quantum Gravity 26, 025013 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. 22

    Curci G., Ferrari R.: A Canonical and Lorentz Covariant Quantization of Yang–Mills Theories. Nuovo Cimento A 35, 273 (1976)

    ADS  Article  Google Scholar 

  23. 23

    DeWitt B.S.: The Global Approach to Quantum Field Theory, vols. 1, 2. The Int. Ser. Monogr. Phys. Oxford Science Publications, Oxford (2003)

    Google Scholar 

  24. 24

    Dittrich B.: Partial and complete observables for canonical general relativity. Class. Quantum Gravity 23, 6155 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. 25

    Domagała M., Giesel K., Kamiński W., Lewandowski J.: Gravity quantized: loop quantum gravity with a scalar field. Phys. Rev. D 82, 104038 (2010)

    ADS  Article  Google Scholar 

  26. 26

    Doplicher S., Morsella G., Pinamonti N.: On quantum spacetime and the horizon problem. J. Geom. Phys. 74, 196–210 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. arXiv:1502.02705 [math-ph]

  28. 28

    Dütsch M., Boas F.-M.: The Master Ward Identity. Rev. Math. Phys 14, 977–1049 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Dütsch M., Fredenhagen K.: A local (perturbative) construction of observables in gauge theories: the example of QED. Commun. Math. Phys. 203, 71–105 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. 30

    Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. In: Proceedings of the Conference on Mathematical Physics in Mathematics and Physics, Siena (2000). arXiv:hep-th/0101079

  31. 31

    Dütsch M., Fredenhagen K.: The master Ward identity and generalized Schwinger–Dyson equation in classical field theory. Commun. Math. Phys. 243, 275 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. 32

    Epstein H., Glaser V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré A 19, 211 (1973)

    MathSciNet  MATH  Google Scholar 

  33. 33

    Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). arXiv:1203.0261 [math-ph]

  34. 34

    Fewster C.J., Pfenning M.J.: A quantum weak energy inequality for spin-one fields in curved spacetime. J. Math. Phys. 44, 4480–4513 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273 (1990)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. 36

    Fredenhagen K., Rejzner K.: Batalin–Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93–127 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. 37

    Fredenhagen, K., Rejzner, K.: Local covariance and background independence. In: Quantum Field Theory and Gravity Conceptual and Mathematical Advances in the Search for a Unified Framework. Birkhäuser 2012, Proceedings of the Conference in Regensburg (28 Sep–1 Oct 2010). arXiv:1102.2376 [math-ph]

  38. 38

    Fredenhagen K., Rejzner K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697–725 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. 39

    Fredenhagen K., Rejzner K.: QFT on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. 40

    Friedrich, H.: Is general relativity ‘essentially understood’? Ann. Phys. 15, 84–108 (2006)

  41. 41

    Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations. In: Schmidt, B. (ed.) Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol. 540. Springer, Berlin (2000)

  42. 42

    Geroch R.P.: Domain of dependence. J. Math. Phys. 11, 437 (1970)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. 43

    Gomis J., Weinberg S.: Are nonrenormalizable gauge theories renormalizable?. Nucl. Phys. B 469, 473 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. 44

    Haag R.: Local Quantum Physics, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  45. 45

    Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. 46

    Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  47. 47

    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975) [Erratum: Commun. Math. Phys. 46, 206 (1976)]

  48. 48

    Hervik S., Coley A.: Curvature operators and scalar curvature invariants. Class. Quantum Gravity 27, 095014 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. 49

    Hollands, S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). arXiv:0705.3340v3 [gr-qc]

  50. 50

    Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. 51

    Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005). arXiv:gr-qc/0404074

  52. 52

    Hörmander L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer, Berlin (2003)

    Google Scholar 

  53. 53

    Jakobs, S.: Eichbrücken in der klassischen Feldtheorie. diploma thesis under the supervision of K. Fredenhagen, Hamburg (2009), DESY-THESIS-2009-009

  54. 54

    Lerner D.E.: The space of Lorentz metrics. Commun. Math. Phys. 32, 19–38 (1973)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. 55

    Lichnerowicz A.: Propagateurs et commutateurs en relativité générale. Publications Mathématiques de l’IHÉS 10, 5–56 (1961)

    Article  MATH  Google Scholar 

  56. 56

    Khavkine I.: Local and gauge invariant observables in gravity. Class. Quantum Gravity 32, 185019 (2015)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. 57

    Kriegl, A., Michor, P.: Convenient setting of global analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997). Online version: http://www.ams.org/online_bks/surv53/1

  58. 58

    Kugo T., Ojima I.: Subsidiary conditions and physical S-matrix unitarity in indefinite metric quantum gravitational theory. Nucl. Phys. 144, 234 (1978)

    ADS  MathSciNet  Article  Google Scholar 

  59. 59

    Kugo T., Ojima I.: Manifestly covariant canonical formulation of Yang–Mills theories physical state subsidiary conditions and physical S-matrix unitarity. Phys. Lett. B 73, 459–462 (1978)

    ADS  Article  Google Scholar 

  60. 60

    Kugo, T., Ojima, I.: Local covariant operator formalism of non-abelian gauge theories and quark confinement problem. Suppl. Prog. Theor. Phys. 66(1) (1979) [Erratum: Prog. Theor. Phys. 71, 1121 (1984)]

  61. 61

    Müller O., Sánchez M.: Lorentzian manifolds isometrically embeddable in L N. Trans. Am. Math. Soc. 363, 5367–5379 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  62. 62

    Nakanishi N.: Indefinite-metric quantum field theory of general relativity. Prog. Theor. Phys. 59, 972 (1978)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. 63

    Nakanishi N.: Indefinite-metric quantum field theory of general relativity. Prog. Theor. Phys. 60, 1190–1203 (1978)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. 64

    Nakanishi, N., Ojima, I.: Covariant operator formalism of gauge theories and quantum gravity. World Scientific Lecture Notes in Physics, vol. 27. World Scientific (1990)

  65. 65

    Neeb, K.-H.: Monastir lecture notes on infinite-dimensional Lie groups. http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf

  66. 66

    Nishijima K., Okawa M.: The Becchi–Rouet–Stora transformation for the gravitational field. Prog. Theor. Phys. 60, 272–283 (1978)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. 67

    Ohlmeyer, S.: The measurement of length in linear quantum gravity. Ph.D. thesis, Hamburg (1997)

  68. 68

    Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. 69

    Rejzner K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23(9), 1009–1033 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  70. 70

    Rejzner, K.: Batalin–Vilkovisky formalism in locally covariant field theory, Ph.D. thesis, DESY-THESIS-2011-041, Hamburg. arXiv:1111.5130 [math-ph]

  71. 71

    Rejzner, K.: Remarks on local symmetry invariance in perturbative algebraic quantum field theory. Annales Henri Poincaré 16, 205–238 (2015). arXiv:1301.7037 [math-ph]

  72. 72

    Reuter M.: Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  73. 73

    Reuter M., Saueressig F.: Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation. Phys. Rev. D 65, 065016 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  74. 74

    Goroff M.H., Sagnotti A.: Quantum gravity at two loops. Phys. Lett. B 160, 81 (1985)

    ADS  Article  Google Scholar 

  75. 75

    Rovelli C.: Partial observables. Phys. Rev. D 65, 124013 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  76. 76

    Sahlmann H., Verch R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203–1246 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  77. 77

    Thiemann T.: Reduced phase space quantization and Dirac observables. Class. Quantum Gravity 23, 1163 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. 78

    Tyutin, I.V.: Gauge invariance in field theory and statistical physics in operator formalism (in Russian). Lebedev preprint 75-39 (1975)

  79. 79

    van de Ven A.E.M.: Two loop quantum gravity. Nucl. Phys. B 378, 309 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  80. 80

    Wald R.M.: The back reaction effect in particle creation in curved space-time. Commun. Math. Phys. 54, 1 (1977)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  81. 81

    Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge, pp. 790–831 (1979)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Rejzner.

Additional information

Dedicated to Roberto Longo on the occasion of his 60th birthday

Communicated by M. Salmhofer

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunetti, R., Fredenhagen, K. & Rejzner, K. Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory. Commun. Math. Phys. 345, 741–779 (2016). https://doi.org/10.1007/s00220-016-2676-x

Download citation