Skip to main content
Log in

The Primitive Spectrum of a Basic Classical Lie Superalgebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove Conjecture 5.7 in Coulembier and Musson (Math. J., arXiv:1409.2532), describing all inclusions between primitive ideals for the general linear superalgebra in terms of the \({{\rm Ext}^{1}}\)-quiver of simple highest weight modules. For arbitrary basic classical Lie superalgebras, we formulate two types of Kazhdan–Lusztig quasi-orders on the dual of the Cartan subalgebra, where one corresponds to the above conjecture. Both orders can be seen as generalisations of the left Kazhdan–Lusztig order on Hecke algebras and are related to categorical braid group actions. We prove that the primitive spectrum is always described by one of the orders, obtaining for the first time a description of the inclusions. We also prove that the two orders are identical if category \({\mathcal{O}}\) admits ‘enough’ abstract Kazhdan–Lusztig theories. In particular, they are identical for the general linear superalgebra, concluding the proof of the conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, H.H., Lauritzen, N.: Twisted Verma modules. Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, pp. 1–26. Birkhäuser Boston, Boston (2003)

  2. Andersen H.H., Stroppel C.: Twisting functors on \({\mathcal{O}}\). Represent. Theory 7, 681–699 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beilinson A., Bernštein I.N.: Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I Math. 292(1), 15–18 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Bernštein I.N., Gel’fand S.I.: Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Comp. Math. 41(2), 245–285 (1980)

    MathSciNet  MATH  Google Scholar 

  5. Bernštein I.N., Gel’fand I.M., Gel’fand S.I.: A certain category of \({\mathfrak{g}}\)-modules. Funkcional. Anal. i Priložen. 10(2), 1–8 (1976)

    MathSciNet  Google Scholar 

  6. Borho W., Jantzen J.C.: Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra. Invent. Math. 39(1), 1–53 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brylinski J.L., Kashiwara M.: Kazhdan–Lusztig conjecture and holonomic systems. Invent. Math. 64(3), 387–410 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brundan J.: Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra \({{\mathfrak{g}}{\mathfrak{l}}(m|n)}\). J. Am. Math. Soc. 16, 185–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brundan, J., Losev, I., Webster, B.: Tensor product categorifications and the super Kazhdan–Lusztig conjecture. arXiv:1310.0349

  10. Carlin K.J.: Extensions of Verma modules. Trans. Am. Math. Soc. 294(1), 29–43 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng S.J., Lam N., Wang W.: The Brundan–Kazhdan–Lusztig conjecture for general linear Lie superalgebras. Duke Math. J. 164(4), 617–695 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng S.J., Mazorchuk V., Wang W.: Equivalence of blocks for the general linear Lie superalgebra. Lett. Math. Phys. 103(12), 1313–1327 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cline E., Parshall B., Scott L.: Abstract Kazhdan–Lusztig theories. Tohoku Math. J. (2) 45(4), 511–534 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coulembier, K., Mazorchuk, V.: Primitive ideals, twisting functors and star actions for classical Lie superalgebras. J. Reine Ang. Math. doi:10.1515/crelle-2014-0079

  15. Coulembier, K., Musson, I.M.: The primitive spectrum for \({\mathfrak{g} \mathfrak{l}(m|n)}\). Accepted in Tohoku. Math. J. arXiv:1409.2532

  16. Coulembier, K., Serganova, V.V.: Homological invariants in category \({\mathcal{O}}\) for the general linear superalgebra. Accepted in TAMS. arXiv:1501.01145

  17. Duflo M.: Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple. Ann. of Math. (2) 105(1), 107–120 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Elias B., Williamson G.: The Hodge theory of Soergel bimodules. Ann. of Math. (2) 180(3), 1089–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frisk A., Mazorchuk V.: Regular stronly typical blocks of \({\mathcal{O}^{\mathfrak{q}}}\). Commun. Math. Phys. 291, 533–542 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gorelik M.: Annihilation theorem and separation theorem for basic classical Lie superalgebras. J. Am. Math. Soc. 15(1), 113–165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gorelik M.: Strongly typical representations of the basic classical Lie superalgebras. J. Am. Math. Soc. 15(1), 167–184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gorelik, M., Grantcharov, D.: Bounded highest weight modules over \({\mathfrak{q}(n)}\). Int. Math. Res. Not. IMRN, no. 22, 6111–6154 (2014)

  23. Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category O. In: Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008)

  24. Iohara K., Koga Y.: Enright functors for Kac–Moody superalgebras. Abh. Math. Semin. Univ. Hambg. 82(2), 205–226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jantzen, J.C.: Einhüllende Algebren halbeinfacher Lie-Algebren. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Springer, Berlin (1983)

  26. Joseph, A.: W-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra. In: Carmona, J., Vergne,M. (eds.) Noncommutative Harmonic Analysis, Lecture Notes in Math. vol. 728, pp. 116–135. Springer, Berlin, (1979)

  27. Joseph A.: The Enright functor on the Bernstein–Gelfand–Gelfand category \({{{\mathcal{O} }}}\). Invent. Math. 67(3), 423–445 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Joseph, A.: Sur l’annulateur d’un module de Verma. With an outline of the annihilation theorem by M. Gorelik and E. Lanzmann. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, pp. 237–300. Kluwer Acad. Publ., Dordrecht (1998)

  29. Kazhdan D., Lusztig G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Khomenko O.: Categories with projective functors. Proc. Lond. Math. Soc. (3) 90(3), 711–737 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khomenko O., Mazorchuk V.: On Arkhipov’s and Enright’s functors. Math. Z. 249(2), 357–386 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Knapp, A.W.: Lie groups, Lie algebras, and cohomology. Mathematical Notes, vol. 34. Princeton University Press, Princeton (1988)

  33. Letzter E.S.: A bijection of primitive spectra for classical Lie superalgebras of type I. J. Lond. Math. Soc. (2) 53(1), 39–49 (1996)

    Article  MathSciNet  Google Scholar 

  34. Mazorchuk V.: Classification of simple \({\mathfrak{q} _2}\)-supermodules. Tohoku Math. J. (2) 62(3), 401–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mazorchuk, V.: Lectures on algebraic categorification. European Mathematical Society (EMS), Zrich, QGM Master Class Series (2012)

  36. Mazorchuk V., Miemietz V.: Serre functors for Lie algebras and superalgebras. Ann. Inst. Fourier 62(1), 47–75 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mazorchuk V., Ovsienko S.: A pairing in homology and the category of linear complexes of tilting modules for a quasi-hereditary algebra. With an appendix by Catharina Stroppel. J. Math. Kyoto Univ. 45(4), 711–741 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Mazorchuk V., Stroppel C.: Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module. Trans. Am. Math. Soc. 357(7), 2939–2973 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mazorchuk V., Stroppel C.: On functors associated to a simple root. J. Algebra 314(1), 97–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miličić D., Soergel W.: The composition series of modules induced from Whittaker modules. Comment. Math. Helv. 72(4), 503–520 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Musson I.M.: A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra. Adv. Math. 91(2), 252–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Musson I.M.: Primitive ideals in the enveloping algebra of the Lie superalgebra \({{\mathfrak{s}}{\mathfrak{l}}(2,1)}\). J. Algebra 159(2), 306–331 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Musson I.M.: The enveloping algebra of the Lie superalgebra osp (1,2r). Represent. Theory 1, 405–423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Musson, I.M.: Lie superalgebras and enveloping algebras. In: Graduate Studies in Mathematics, vol. 131. American Mathematical Society, Providence (2012)

  45. Penkov I.: Generic representations of classical Lie superalgebras and their localization. Monatsh. Math. 118(3–4), 267–313 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Penkov I., Serganova V.V.: Representations of classical Lie superalgebras of type I. Indag. Math. (N.S.) 3(4), 419–466 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rouquier, R.: Categorification of sl2 and braid groups. In: de la Pena, J., Bautista, R. (eds.) Trends in RepresentationTheory ofAlgebras and RelatedTopics,Contemp. Math., vol. 406, pp. 137–167. American Mathematical Society, Providence (2006)

  48. Serganova, V.: Kac–Moody superalgebras and integrability. In: Neeb, K., Pianzola, A. (eds.) Developments and Trends in Infinite-Dimensional Lie Theory, Progr. Math., vol. 288, pp. 169–218. Birkhäuser Boston, Inc., Boston (2011)

  49. Vogan D.A.: Irreducible characters of semisimple Lie groups. II. The Kazhdan–Lusztig conjectures. Duke Math. J. 46(4), 805–859 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vogan D.A.: Ordering of the primitive spectrum of a semisimple Lie algebra. Math. Ann. 248, 195–303 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Coulembier.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulembier, K. The Primitive Spectrum of a Basic Classical Lie Superalgebra. Commun. Math. Phys. 348, 579–602 (2016). https://doi.org/10.1007/s00220-016-2667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2667-y

Keywords

Navigation