Communications in Mathematical Physics

, Volume 344, Issue 3, pp 915–957 | Cite as

Quantum Gibbs Samplers: The Commuting Case

  • Michael J. Kastoryano
  • Fernando G. S. L. Brandão


We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative \({\mathbb{L}_p}\) spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.


Quantum Computer Conditional Expectation Gibbs Sampler Gibbs State Logarithmic Sobolev Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haagerup U.: Lp-spaces associated with an arbitrary von neumann algebra. Algebres d'opérateurs et leurs application en Physique Mathematique, CNRS 15, 175–184 (1979)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Terp, M.: Lp Spaces Associated with Von Neumann Algebras, vol. 3. Notes, Math. Institute, Copenhagen Univ (1981)Google Scholar
  3. 3.
    Binder K., Heermann D.: Monte Carlo Simulation in Statistical Physics: An Introduction. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Riera A., Gogolin C., Eisert J.: Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108, 080402 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Short A.J., Farrelly T.C.: Quantum equilibration in finite time. New J. Phys. 14, 013063 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Mueller M.P., Adlam E., Masanes L., Wiebe N.: Thermalization and canonical typicality in translation-invariant quantum lattice systems. Commun. Math. Phys. 340(2), 499–561 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brandao, F.G.S.L., Cramer, M.: Equivalence of statistical mechanical ensembles for non-critical quantum systems. arXiv:1502.03263
  8. 8.
    Levin D.A., Peres Y., Wilmer E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  9. 9.
    Diaconis P.: The markov chain monte carlo revolution. Bull. Am. Math. Soc. 46, 179 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Poulin D., Wocjan P.: Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett. 103, 220502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Terhal B.M., DiVincenzo D.P.: Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61(2), 022301 (2000)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Temme K., Osborne T.J., Vollbrecht K.G., Poulin D., Verstraete F.: Quantum metropolis sampling. Nature 471, 87 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Riera A., Gogolin C., Eisert J.: Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108, 080402 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Dennis E., Kitaev A., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43, 4452 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Alicki, R., Horodecki, M., Horodecki, P., Horodecki, R.: On thermal stability of topological qubit in Kitaev’s 4D model. Open Syst. Inf. Dyn. 17 (2010)Google Scholar
  16. 16.
    Alicki R., Fannes M., Horodecki M.: On thermalization in Kitaev’s 2D model. J. Phys. A Math. Theor. 42, 065303 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Alicki, R., Lendl, K.: Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics, vol. 286. Springer, Berlin (1987)Google Scholar
  18. 18.
    Cubitt T., Lucia A., Michalakis S., Perez-Garcia D.: Stability of local quantum dissipative systems. Commun. Math. Phys. 337(3), 1275–1315 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Guionnet A., Zegarlinski B.: Lectures on Logarithmic Sobolev Inequalities. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kastoryano M.J., Eisert J.: Rapid mixing implies exponential decay of correlations. J. Math. Phys. 54, 102201 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kastoryano M.J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54, 052202 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Temme K., Kastoryano M.J., Ruskai M.B., Wolf M.M., Verstraete F.: The \({\chi^2}\)-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51, 122201 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dobrushin R.L.: Description of a random field by means of conditional probabilities and the conditions governing its regularity. Theor. Probab. Appl. 13, 1977224 (1968)Google Scholar
  24. 24.
    Lanford O.E., Ruelle D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 19417215 (1969)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Schoen C., Solano E., Verstraete F., Cirac J.I., Wolf M.M.: Sequential generation of entangled multi-qubit states. Phys. Rev. Lett. 95, 110503 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Hastings M.B.: Solving gapped Hamiltonians Locally. Phys. Rev. B 73, 085115 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Temme K.: Lower bounds to the spectral gap of Davies generators. J. Math. Phys. 54(12), 122110 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Davies E.B.: Generators of dynamical semigroups. J. Funct. Anal. 34, 421 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kliesch M., Barthel T., Gogolin C., Kastoryano M., Eisert J.: A dissipative quantum Church–Turing theorem. Phys. Rev. Lett. 107, 120501 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Yung M.-H., Aspuru-Guzik Alan: A quantum–quantum metropolis algorithm. Proc. Natl. Acad. Sci. USA 109, 754 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. In: Proceedings of the 3rd Conference on Innovations in Theoretical Computer Science (ITCS’12), pp. 290–308. ACM Press, New York (2012)Google Scholar
  32. 32.
    Wolf, M.M.: Quantum channels and operations: guided tour.
  33. 33.
    Majewski, A.W., Zegarlinski, B.: Quantum Stochastic Dynamics I: Spin Systems on a Lattice. MPEJ (1995)Google Scholar
  34. 34.
    Majewski A.W., Olkiewicz R., Zegarlinski B.: Dissipative dynamics for quantum spin systems on a lattice. J. Phys. A Math. Gen. 31, 2045 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Majewski A.W., Zegarlinski B.: Quantum stochastic dynamics II. Rev. Math. Phys. 8, 689 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Petz D.: Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics. Springer, Berlin (2008)zbMATHGoogle Scholar
  37. 37.
    Yoshida N.: The equivalence of the Log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Ann. Inst. H. Poincare, Prob. Stat. 37, 223 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yoshida N.: Relaxed criteria of the Dobrushin–Shlosman mixing condition. J. Stat. Phys. 87, 1 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Davies E.B.: One-Parameter Semigroups. Academic press, London (1980)zbMATHGoogle Scholar
  40. 40.
    Cesi F.: Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields. Probab. Theory Relat. Fields 120, 569–584 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Bertini L., Cancrini N., Cesi F.: The spectral gap for a Glauber-type dynamics in a continuous gas. Ann. Inst. Henri Poincare 38, 9117108 (2002)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Aharonov D., Arad, I., Landau, Z., Vazirani, U.: The detectability lemma and quantum gap amplification. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, vol. 417 (2009)Google Scholar
  43. 43.
    Aharonov D., Arad I., Landau Z., Vazirani U.: Quantum Hamiltonian complexity and the detectability lemma. New J. Phys. 13, 113043 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Martinelli F.: Relaxation Times of Markov Chains in Stastical Mechanics and Combinatorial Structures, Probability on Discrete Structures. Springer, Berlin (2000)Google Scholar
  45. 45.
    Martinelli, F.: Lectures on Glauber dynamics for discrete spin systems. Springer, Lecture Notes in Mathematics, vol. 1717, p. 93 (1999)Google Scholar
  46. 46.
    Martinelli F., Olivieri E., Schonmann R.H.: For 2D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165, 33 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Araki H.: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys. 14, 120 (1969)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Vidal G.: Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. CMP 144(3), 443–490 (1992)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Fannes M., Werner R.F.: Boundary conditions for quantum lattice systems. Helv. Phys. Acta 68, 635 (1995)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Nachtergaele B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Perez-Garcia D., Verstraete F., Wolf M., Cirac I.: Matrix product state representations. Q. Inf. Comput. 7, 401 (2007)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Kliesch M., Gogolin C., Kastoryano M.J., Riera A., Eisert J.: Locality of temperature. Phys. Rev. X 4, 031019 (2014)Google Scholar
  54. 54.
    Poulin D.: Lieb–Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104, 190401 (2010)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Israel R.B.: Convexity in the Theory of Lattice Gases. Princeton University Press, Princeton (1979)zbMATHGoogle Scholar
  56. 56.
    Dobrushin, R.L., Shlosman, S.B.: Constructive criteria for the uniqueness of Gibbs fields. In: Fritz, J., Jaffe, A., Szasz, D. Statistical Physics and Dynamical Systems, Birkhäuser, Boston (1985)Google Scholar
  57. 57.
    Michalakis S., Zwolak J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Cirac J.I., Michalakis S., Perez-Carcia D., Schuch N.: Robustness in projected entangled pair states. Phys. Rev. B 88, 15108 (2013)CrossRefGoogle Scholar
  59. 59.
    Osborne T.J.: Hamiltonian complexity. Rep. Prog. Phys. 75, 022001 (2012)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Gharibian, S., Huang, Y., Landau, Z.: Quantum Hamiltonian complexity. arXiv:1401.3916
  61. 61.
    Olkiewicz R., Zegarlinski B.: Hypercontractivity in noncommutative lp spaces. J. Funct. Anal. 161(1), 24617285 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Temme K., Pastawski F., Kastoryano M.J.: Hypercontractivity of quasi-free quantum semigroups. J. Phys. A. Math. Theor. 47, 405303 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Bensionovich S.B.: Uniqueness and half-space nonuniqueness of Gibbs states in Czech models. Theor. Math. Phys. 66, 284 (1986)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Knabe S.: Energy gaps and elementary excitations for certain VBS-quantum antiferromagnets. J. Stat. Phys. 52, 627 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Chesi S., Röthlisberger B., Loss D.: Self-correcting quantum memory in a thermal environment. Phys. Rev. A 82, 022305 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    Yoshida B.: Feasibility of self-correcting quantum memory and thermal stability of topological order. Ann. Phys. 326, 2566 (2011)ADSCrossRefzbMATHGoogle Scholar
  67. 67.
    Bravyi S., Terhal B.: A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes. New J. Phys. 11, 043029 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    Chesi S., Loss D., Bravyi S., Terhal B.: Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes. New J. Phys. 12, 025013 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    Landon-Cardinal O., Poulin D.: Local topological order inhibits thermal stability in 2D. Phys. Rev. Lett. 110, 090502 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    Hastings M.B.: Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    Temme, K.: Thermalization time bounds for Pauli stabilizer Hamiltonians. arXiv:1412.2858 (2014)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael J. Kastoryano
    • 1
  • Fernando G. S. L. Brandão
    • 2
    • 3
  1. 1.Dahlem Center for Complex Quantum SystemsFreie Universität BerlinBerlinGermany
  2. 2.Quantum Architectures and Computation GroupMicrosoft ResearchRedmondUSA
  3. 3.Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations