Skip to main content
Log in

The Three-Component Defocusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a rigorous theory of the inverse scattering transform (IST) for the three-component defocusing nonlinear Schrödinger (NLS) equation with initial conditions approaching constant values with the same amplitude as \({x\to\pm\infty}\). The theory combines and extends to a problem with non-zero boundary conditions three fundamental ideas: (i) the tensor approach used by Beals, Deift and Tomei for the n-th order scattering problem, (ii) the triangular decompositions of the scattering matrix used by Novikov, Manakov, Pitaevski and Zakharov for the N-wave interaction equations, and (iii) a generalization of the cross product via the Hodge star duality, which, to the best of our knowledge, is used in the context of the IST for the first time in this work. The combination of the first two ideas allows us to rigorously obtain a fundamental set of analytic eigenfunctions. The third idea allows us to establish the symmetries of the eigenfunctions and scattering data. The results are used to characterize the discrete spectrum and to obtain exact soliton solutions, which describe generalizations of the so-called dark-bright solitons of the two-component NLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1992)

  2. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, vol. 302. Cambridge University Press, Cambridge (2004)

  3. Ablowitz M.J., Segur H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  4. Baronio F., Degasperis A., Conforti M., Wabnitz S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044012 (2012)

    Article  ADS  Google Scholar 

  5. Beals R., Coifman R.R.: Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math. 37, 39–90 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beals R., Deift P., Tomei C.: Direct and Inverse Scattering on the Line. American Mathematical Society, Providence (1988)

    Book  MATH  Google Scholar 

  7. Belokolos E.D., Bobenko A.I., Enol’skii V.Z., Its A.R., Matveev V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  8. Biondini G.: Soliton interactions in the Kadomtsev–Petviashvili II equation. Phys. Rev. Lett. 99, 064103 (2007)

    Article  ADS  Google Scholar 

  9. Biondini G., Chakravarty S.: Soliton solutions of the Kadomtsev–Petviashvili II equation. J. Math. Phys. 47, 033514 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Biondini G., Chakravarty S.: Elastic and inelastic line-soliton solutions of the Kadomtsev–Petviashvili II equation. Math. Comput. Simul. 74, 237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biondini G., Fagerstrom E.R.: The integrable nature of modulational instability. SIAM J. Appl. Math. 75, 136–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biondini, G., Fagerstrom, E.R., Prinari, B.: Inverse scattering transform for the defocusing nonlinear Schrödinger equation with asymmetric boundary conditions. Phys. D (2016, to appear)

  13. Biondini G., Kodama Y.: On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hiera rchy. J. Phys. A 36, 10519–10536 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Biondini G., Kovacic G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Biondini G., Kraus D.K.: Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions. SIAM J. Math. Anal. 47, 706–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Biondini G., Kraus D.K., Prinari B., Vitale F.: Polarization interactions in multi-component repulsive Bose–Einstein condensates. J. Phys. A. 48, 395202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Biondini G., Prinari B.: On the spectrum of the Dirac operator and the existence of discrete eigenvalues for the defocusing nonlinear Schrödinger equation. Stud. Appl. Math. 132, 138–159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boiti M., Pempinelli F.: The spectral transform for the NLS equation with left–right asymmetric boundary conditions. Nuovo Cimento A 69, 213–227 (1982)

    Article  MathSciNet  Google Scholar 

  19. Chakravarty S., Kodama Y.: Classification of the soliton solutions of KPII. J. Phys. A 41, 275209 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Spproach, Courant Lecture Notes, vol. 3. Courant Institute of Mathematical Sciences (2000)

  21. Deift P., Trubowitz E.: Inverse scattering on the line. Commun. Pure Appl. Math. 21, 121–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deift P., Venakides S., Zhou X.: The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun. Pure Appl. Math. 47, 199–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the mKdV equation. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Demontis F., Prinari B., van der Mee C., Vitale F.: The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions. Stud. Appl. Math. 131, 1–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Demontis F., Prinari B., van der Mee C., Vitale F.: The inverse scattering transform for the focusing nonlinear Schrodinger equation with asymmetric boundary conditions. J. Math. Phys. 55, 101505 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Faddeev L.D., Takhtajan L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  27. Frankel T.: The Geometry of Physics: An Introduction. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  28. Gantmacher F.R.: Matrix Theory, vol. 1. American Mathematical Society, Providence (2000)

    Google Scholar 

  29. Gesztesy F., Holden H.: Soliton Equations and Their Algebro-geometric Solutions. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  30. Hoefer M.A., Chang J.J., Hamner C., Engels P.: Dark-dark solitons and modulational instability in miscible two-component Bose–Einstein condensates. Phys. Rev. A 84, 041605 (2011)

    Article  ADS  Google Scholar 

  31. Infeld E., Rowlands G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  32. Its A.R., Ustinov A.F.: Temporal asymptotic solution of the Cauchy problem for the nonlinear Schrödinger equation with boundary conditions of the finite-density type. Sov. Phys. Dokl. 31, 893–895 (1986)

    ADS  MATH  Google Scholar 

  33. Kaup D.J.: The three-wave interaction—a nondispersive phenomenon. Stud. Appl. Math. 55, 9–44 (1976)

    Article  MathSciNet  Google Scholar 

  34. Kibler B., Fatome J., Finot C., Millot G., Dias F., Genty G., Akhmediev N., Dudley J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Article  Google Scholar 

  35. Kodama Y.: Young diagrams and N-soliton solutions of the KP equation. J. Phys. A 37, 11169 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kodama Y., Williams L.: KP solitons, total positivity, and cluster algebras. Proc. Nat. Acad. Sci. 108, 8984–8989 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Kodama Y., Williams L.: The Deodhar decomposition of the Grassmannian and the regularity of KP solitons. Adv. Math. 244, 979–1032 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kraus D.K., Biondini G., Kovacic G.: The focusing Manakov system with nonzero boundary conditions. Nonlinearity 28, 3101–3151 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  40. Manakov S.V.: On the theory of two-dimensional stationary self-focusing electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)

    ADS  MathSciNet  Google Scholar 

  41. Novikov S.P., Manakov S.V., Pitaevskii L.P., Zakharov V.E.: Theory of Solitons: The Inverse Scattering Method. Plenum, New York (1984)

    MATH  Google Scholar 

  42. Prinari B., Ablowitz M.J., Biondini G.: Inverse scattering transform for the vector nonlinear Schrödinger equation with non-vanishing boundary conditions. J. Math. Phys. 47, 063508 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Prinari B., Biondini G., Trubatch A.D.: Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions. Stud. Appl. Math. 126, 245–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Prinari B., Vitale F., Biondini G.: Dark-bright soliton solutions with nontrivial polarization interactions for the three-component defocusing nonlinear Schrödinger equation with non-zero boundary conditions. J. Math. Phys. 56, 071505 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Sulem C., Sulem P.L.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Springer, New York (1999)

    MATH  Google Scholar 

  46. Vartanian A.H.: Exponentially small asymptotics of solutions to the defocusing nonlinear Schrödinger equation. J. Phys. A Math Gen. 34, L647–L655 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Vartanian A.H.: Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. Math. Phys. Anal. Geom. 5, 319–413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Whitham G.B.: Linear and Nonlinear Waves. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  49. Yan D., Chang J.J., Hamner C., Hoefer M., Kevrekidis P.G., Engels P., Achilleos V., Frantzeskakis D.J., Cuevas J.: Beating dark-dark solitons in Bose–Einstein condensates. J. Phys. B 45, 115301 (2012)

    Article  ADS  Google Scholar 

  50. Zakharov V.E., Ostrovsky L.A.: Modulation instability: the beginning. Phys. D 238, 540–548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zakharov V.E., Shabat A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    ADS  MathSciNet  Google Scholar 

  52. Zakharov V.E., Shabat A.B.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37, 823–828 (1973)

    ADS  Google Scholar 

  53. Zhao L.C., Liu J.: Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation. Phys. Rev. E 87, 013201 (2013)

    Article  ADS  Google Scholar 

  54. Zhou X.: Direct and inverse scattering transforms with arbitrary spectral singularities. Commun. Pure Appl. Math. 42, 895–938 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Biondini.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biondini, G., Kraus, D.K. & Prinari, B. The Three-Component Defocusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions. Commun. Math. Phys. 348, 475–533 (2016). https://doi.org/10.1007/s00220-016-2626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2626-7

Keywords

Navigation