Advertisement

Communications in Mathematical Physics

, Volume 344, Issue 2, pp 581–620 | Cite as

Analytic Dependence is an Unnecessary Requirement in Renormalization of Locally Covariant QFT

  • Igor Khavkine
  • Valter MorettiEmail author
Article

Abstract

Finite renormalization freedom in locally covariant quantum field theories on curved spacetime is known to be tightly constrained, under certain standard hypotheses, to the same terms as in flat spacetime up to finitely many curvature dependent terms. These hypotheses include, in particular, locality, covariance, scaling, microlocal regularity and continuous and analytic dependence on the metric and coupling parameters. The analytic dependence hypothesis is somewhat unnatural, because it requires that locally covariant observables (which are simultaneously defined on all spacetimes) depend continuously on an arbitrary metric, with the dependence strengthened to analytic on analytic metrics. Moreover the fact that analytic metrics are globally rigid makes the implementation of this requirement at the level of local \({*}\)-algebras of observables rather technically cumbersome. We show that the conditions of locality, covariance, scaling and a naturally strengthened microlocal spectral condition, are actually sufficient to constrain the allowed finite renormalizations equally strongly, thus eliminating both the continuity and the somewhat unnatural analyticity hypotheses. The key step in the proof uses the Peetre–Slovák theorem on the characterization of (in general non-linear) differential operators by their locality and regularity properties.

Keywords

Domain Versus Analytic Dependence Background Geometry Tensor Density Homogeneous Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, I.M., Torre, C.G.: Two component spinors and natural coordinates for the prolonged Einstein equation manifolds, tech. rep., Utah State University (1994)Google Scholar
  2. 2.
    Anderson, I.M., Torre, C.G.: Classification of local generalized symmetries for the vacuum Einstein equations. Commun. Math. Phys. 176, 479–539 (1996). arXiv:gr-qc/9404030
  3. 3.
    Appleby P.G., Duffy B.R., Ogden R.W.: On the classification of isotropic tensors. Glasgow Math. J. 29, 185–196 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bierstone E.: Differentiable functions. Boletim da Sociedade Brasileira de Matemática 11, 139–189 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fulling S.A., King R.C., Wybourne B.G., Cummins C.J.: Normal forms for tensor polynomials. I. The Riemann tensor. Class. Quantum Gravity 9, 1151–1197 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fulton W.: Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  10. 10.
    Gel’fand, I.M., Shapiro, Z.Y.: Homogeneous functions and their extensions. Uspekhi Matematicheskikh Nauk 10, 3–70 (1955). http://mi.mathnet.ru/eng/umn7998
  11. 11.
    Shilov I.M., Gel’fand G.E.: Generalized Functions, vol. I. Properties and Operations. Academic Press, New York (1964)zbMATHGoogle Scholar
  12. 12.
    Goodman R., Wallach N.R.: Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, vol. 255. Springer, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001). arXiv:gr-qc/0103074
  14. 14.
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002). arXiv:gr-qc/0111108
  15. 15.
    Iyer, V., Wald, R.M.: Some properties of the noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846–864 (1994). arXiv:gr-qc/9403028
  16. 16.
    Kolař I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Electronic Library of Mathematics. Springer, Berlin (1993)zbMATHGoogle Scholar
  17. 17.
    Navarro, J., Sancho, J.B.: Peetre–Slovák’s theorem revisited (2014). arXiv:1411.7499
  18. 18.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol. 107, 2nd edn. Springer, New York (1993)Google Scholar
  19. 19.
    Peetre, J.: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7, 211–218 (1959). http://eudml.org/doc/165715
  20. 20.
    Peetre J.: Réctification à l’article: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 8, 116–120 (1960). http://eudml.org/doc/251805
  21. 21.
    Penrose R.: A spinor approach to general relativity. Ann. Phys. 10, 171–201 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shelkovich V.M.: Associated and quasi associated homogeneous distributions (generalized functions). J. Math. Anal. Appl. 338, 48–70 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Slovák J.: Peetre theorem for nonlinear operators. Ann. Global Anal. Geom. 6, 273–283 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Thomas T.Y.: Differential Invariants of Generalized Spaces. CUP, Cambridge (1934)zbMATHGoogle Scholar
  25. 25.
    Tichy, W., Flanagan, E.: How unique is the expected stress-energy tensor of a massive scalar field? Phys. Rev. D 58 (1998) 124007. arXiv:gr-qc/9807015
  26. 26.
    Torre, C.G.: Spinors, jets, and the Einstein equations. In: Braham, S.P., Gegenberg, J.D., McKellar, R.J. (eds.) The Sixth Canadian Conference on General Relativity and Relativistic Astrophysics, Fields Institute Communications, vol. 15, pp. 125–136. AMS, Providence (1997). arXiv:gr-qc/9508005
  27. 27.
    Weyl H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (1997)zbMATHGoogle Scholar
  28. 28.
    Zahn, J.: Locally covariant charged fields and background independence. Rev. Math. Phys. 27, 1550017 (2015). arXiv:1311.7661

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Trento, INFN-TIFPA TrentoPovo (Trento)Italy

Personalised recommendations