Skip to main content
Log in

Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki–Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization \({E_R^{\infty}}\), as well as of the entanglement of formation, E F . Using a novel “quantum coupling” of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, \({E_C=E_F^{\infty}}\). Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A Math. Gen. 37, L55–L57 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Araki H., Lieb E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  3. Audenaert K.M.R.: A sharp continuity estimate for the von Neumann entropy. J. Math. Phys. A Math. Theor. 40(28), 8127–8136 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bogachev V.I., Kolesnikov A.V.: The Monge–Kantorovich problem: achievements, connections, and perspectives. Russian Math. Surv. 67(5), 785–890 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Christandl, M.: The structure of bipartite quantum states—insights from group theory and cryptography. PhD Thesis, Department of Applied Mathematics and Theoretical Physics, Cambridge University (2006). arXiv:quant-ph/0604183

  7. Christandl M., Winter A.: Squashed entanglement—an additive entanglement measure. J. Math. Phys. 45(3), 829–840 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Christandl M., Schuch N., Winter A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311, 397–422 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cover T.M., Thomas J.A.: Elements of Information Theory, 2nd ed. Wiley, New York (2006)

  10. Devetak I., Shor P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287–303 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Donald M.J., Horodecki M.: Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257–260 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Eisert J., Simon C., Plenio M.B.: On the quantification of entanglement in infinite-dimensional quantum systems. J. Phys. A Math. Gen. 35(17), 3911–3923 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fannes M.: A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31, 291–294 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fuchs C.A., van de Graaf J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nature Phys. 5, 255–257 (2009)

    Article  ADS  Google Scholar 

  16. Hayden P.M., Horodecki M., Terhal B.M.: The asymptotic entanglement cost of preparing a quantum state. J. Phys. A Math. Gen. 34(35), 6891–6898 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Holevo A.S.: On Quantum Communication Channels with Constrained Inputs. arXiv:quant-ph/9705054 (1997)

  18. Holevo A.S.: Entanglement-assisted capacities of constrained quantum channels. Theory Probab. Appl. 48(2), 243–255 (2006)

    Article  MathSciNet  Google Scholar 

  19. Holevo A.S., Shirokov M.E.: Continuous ensembles and the capacity of infinite-dimensional quantum channels. Theory Probab. Appl. 50(1), 86–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Horn R., Johnson Ch.: Matrix Analysis, 2nd ed. Cambridge University Press, Cambridge (2013)

  21. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Locking entanglement with a single qubit. Phys. Rev. Lett. 94, 200501 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hughston L.P., Jozsa R., Wootters W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14–18 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kim I., Ruskai M.-B.: Bounds on the concavity of entropy. J. Math. Phys. 55, 092201 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kimura G., Miyadera T., Imai H.: Optimal state discrimination in general probabilistic theories. Phys. Rev. A 79, 062306 (2009)

    Article  ADS  Google Scholar 

  25. Kok P., Lovett B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  26. Leung D., Smith G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292(1), 201–215 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lieb E.H., Ruskai M.-B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  28. Mosonyi M., Hiai F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57(4), 2474–2487 (2011)

    Article  MathSciNet  Google Scholar 

  29. Nielsen M.A.: Continuity bounds for entanglement. Phys. Rev. A 61, 064301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ohya M., Petz D.: Quantum Entropy and Its Use. 2nd ed. Springer, Berlin (2004)

    MATH  Google Scholar 

  31. Ouyang, Y.: Channel covariance, twirling, contraction, and some upper bounds on the quantum capacity. Quantum Inf. Comput. 14(11, 12):917–936 (2014). arXiv:1106.2337v6 [quant-ph]

  32. Petz D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Piani, M., Winter, A.: Extra-weak additivity of the relative entropy of entanglement (in eternal preparation)

  34. Sason I.: Entropy bounds for discrete random variables via maximal coupling. IEEE Trans. Inf. Theory 59(11), 7118–7131 (2013)

    Article  MathSciNet  Google Scholar 

  35. Schrödinger E.: Discussion of probability relations between separated systems. Math. Proc. Cambridge Phil. Soc. 31(4), 555–563 (1935)

    Article  ADS  MATH  Google Scholar 

  36. Schrödinger E.: Probability relations between separated systems. Math. Proc. Cambridge Phil. Soc. 32(3), 446–452 (1936)

    Article  ADS  MATH  Google Scholar 

  37. Shirokov M.E., Holevo A.S.: On approximation of infinite-dimensional quantum channels. Probl. Inf. Transm. 44(2), 73–90 (2008)

    Article  MathSciNet  Google Scholar 

  38. Shirokov M.E.: Entropy characteristics of subsets of states. I. Izvestiya Math. 70(6), 1265–1292 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Shirkov M.E.: Continuity of the von Neumann entropy. Commun. Math. Phys. 296(3), 625–654 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. Shirokov, M.E.: Measures of quantum correlations in infinite-dimensional systems (2015). arXiv:1506.06377 [quant-ph]

  41. Shirokov, M.E.: Squashed entanglement in infinite dimensions (2015). arXiv:1507.08964v3 [quant-ph]

  42. Smith G., Smolin J.A., Winter A.: The quantum capacity with symmetric side channels. IEEE Trans. Inf. Theory 54(9), 4208–4217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Smith G.: Private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78, 022306 (2008)

    Article  ADS  Google Scholar 

  44. Sutter, D., Scholz, V.B., Renner, R., Winter, A.: Approximate Degradable Quantum Channels (2015). arXiv:1412.0980v2 [quant-ph]

  45. Sutter, D., Scholz, V.B., Renner, R., Winter, A. (in preparation)

  46. Synak-Radtke, B., Horodecki, M.: On asymptotic continuity of functions of quantum states. J. Phys. A Math. Gen. 39(2006), L 423–L 437 (2005). arXiv:quant-ph/0507126

  47. Umegaki H.: Conditional expectations in an operator alegebra IV (entropy and information). Kodai Math. Sem. Rep. 14, 59–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  50. Weedbrook C., Pirandola S., García-Patrón R., Cerf N.J., Ralph T.C., Shapiro J.H., Lloyd S.: Gaussian quantum information. Rev. Mod. Phys 84(2), 621–669 (2012)

    Article  ADS  Google Scholar 

  51. Wehrl A.: General properties of entropy. Rev. Mod. Phys. 50(2), 221–260 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Weis S., Knauf A.: Entropy distance: new quantum phenomena. J. Math. Phys. 53, 102206 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Wilde M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  54. Winter A.: ‘Extrinsic’ and ‘intrinsic’ data in quantum measurements: asymptotic convex decomposition of positive operator valued measures. Commun. Math. Phys. 244, 157–185 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Yang, D., Horodecki, M., Wang, Z.D.: An additive and operational entanglement measure: conditional entanglement of mutual information. Phys. Rev. Lett. 101, 140501 (2008). arXiv:quant-ph/0701149

  56. Zhang Z.: Estimating mutual information via Kolmogorov distance. IEEE Trans. Inf. Theory 53(9), 3280–3282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winter.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, A. Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints. Commun. Math. Phys. 347, 291–313 (2016). https://doi.org/10.1007/s00220-016-2609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2609-8

Keywords

Navigation