Andersen J.E.: Deformation quantization and geometric quantization of abelian moduli spaces. Commun. Math. Phys. 255(3), 727–745 (2005)
Article
ADS
MATH
Google Scholar
Andersen J.E.: Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups. Ann. Math. 163, 347–368 (2006)
Article
MATH
Google Scholar
Andersen J.E.: The Nielsen–Thurston classification of mapping classes is determined by TQFT. J. Math. Kyoto Univ. 48(2), 323–338 (2008)
MathSciNet
MATH
Google Scholar
Andersen J.E.: Toeplitz Operators and Hitchin’s Projectively Flat Connection. The Many Facets of Geometry., pp. 177–209. Oxford University Press, Oxford (2010)
Andersen J.E.: Hitchin’s connection, Toeplitz operators, and symmetry invariant deformation quantization. Quantum Topol. 3(3), 293–325 (2012)
Article
MathSciNet
MATH
Google Scholar
Andersen, J.E., Blaavand, J.L.: Asymptotics of Toeplitz operators and applications in TQFT. In: Geometry and Quantization. Trav. Math., vol. 19, pp. 167–201, University of Luxembourg, Luxembourg (2011)
Andersen, J.E., Gammelgaard, N.L.: Hitchin’s projectively flat connection, Toeplitz operators and the asymptotic expansion of TQFT curve operators. In: Grassmannians, Moduli Spaces and Vector Bundles, Clay Mathematics Proceedings, American Mathematical Society, Providence, RI, Vol. 14, pp. 1–24 (2011)
Andersen J.E., Ueno K.: Abelian conformal field theory and determinant bundles. Int. J. Math. 18(8), 919–993 (2007)
Article
MathSciNet
MATH
Google Scholar
Andersen J.E., Ueno K.: Geometric construction of modular functors from conformal field theory. J. Knot Theory Ramif. 16(2), 127–202 (2007)
Article
MathSciNet
MATH
Google Scholar
Andersen J.E., Ueno K.: Modular functors are determined by their genus zero data. Quantum Topol. 3(3–4), 255–291 (2012)
Article
MathSciNet
MATH
Google Scholar
Andersen J.E., Ueno K.: Construction of the Witten–Reshetikhin–Turaev TQFT from conformal field theory. Invent. Math. 201(2), 519–559 (2015)
Article
ADS
MathSciNet
Google Scholar
Araujo, M., Granja, G.: Symplectic embeddings in infinite codimension, pp. 1–15 (2014). arXiv preprint arXiv:1404.2433
Axelrod S., Della Pietra S., Witten E.: Geometric quantization of Chern–Simons gauge theory. J. Differ. Geom. 33(3), 787–902 (1991)
MathSciNet
MATH
Google Scholar
Berezin F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38, 1116–1175 (1974)
MathSciNet
Google Scholar
De Wilde M., Lecomte P.B.A.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7(6), 487–496 (1983)
Article
ADS
MathSciNet
MATH
Google Scholar
Deligne P.: Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte. Selecta Mathematica, New Series 1(4), 667–697 (1995)
Article
MathSciNet
MATH
Google Scholar
Fedosov B.: Deformation Quantization and Index Theory. Mathematical Topics, vol. 9. Akademie Verlag, Berlin (1996)
Google Scholar
Fedosov B.V.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40(2), 213–238 (1994)
MathSciNet
MATH
Google Scholar
Gammelgaard N.L.: A universal formula for deformation quantization on Kähler manifolds. Adv. Math. 259, 766–783 (2014)
Article
MathSciNet
MATH
Google Scholar
Gerstenhaber M.: The cohomology structure of an associative ring. Ann. Math. 78(2), 267–288 (1963)
Article
MathSciNet
MATH
Google Scholar
Gutt S., Rawnsley J.: Equivalence of star products on a symplectic manifold; an introduction to Deligne’s Čech cohomology classes. J. Geom. Phys. 29(4), 347–392 (1999)
Article
ADS
MathSciNet
MATH
Google Scholar
Gutt S., Rawnsley J.: Natural star products on symplectic manifolds and quantum moment maps. Lett. Math. Phys. 66(1–2), 123–139 (2003)
Article
ADS
MathSciNet
MATH
Google Scholar
Hawkins E.: Geometric quantization of vector bundles and the correspondence with deformation quantization. Commun. Math. Phys. 215(2), 409–432 (2000)
Article
ADS
MathSciNet
MATH
Google Scholar
Hitchin N.: Flat connections and geometric quantization. Commun. Math. Phys. 131(2), 347–380 (1990)
Article
ADS
MathSciNet
MATH
Google Scholar
Karabegov A.V.: Deformation quantizations with separation of variables on a Kähler manifold. Commun. Math. Phys. 180(3), 745–755 (1996)
Article
ADS
MathSciNet
MATH
Google Scholar
Karabegov A.V., Schlichenmaier M.: Identification of Berezin–Toeplitz deformation quantization. J. Reine Angew. Math. 540, 49–76 (2001)
MathSciNet
MATH
Google Scholar
Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)
Article
ADS
MathSciNet
MATH
Google Scholar
Laszlo Y.: Hitchin’s and WZW connections are the same. J. Differ. Geom. 49(3), 547–576 (1998)
MathSciNet
MATH
Google Scholar
Reshetikhin N., Takhtajan L.A.: Deformation quantization of Kähler manifolds. Transl. Am. Math. Soc. Ser. 201(2), 257–276 (2000)
MathSciNet
Google Scholar
Reshetikhin N., Turaev V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–597 (1991)
Article
ADS
MathSciNet
MATH
Google Scholar
Reshetikhin N.Yu., Turaev V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127(1), 1–26 (1990)
Article
ADS
MathSciNet
MATH
Google Scholar
Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization. In: Conference Moshé Flato 1999, Vol. II (Dijon), pp. 289–306, Kluwer Academic Publishers, Dordrecht (2000)
Schlichenmaier, M.: Berezin–Toeplitz quantization for compact Kähler manifolds. In: An introduction, Geometry and Quantization. Trav. Math., vol. 19, pp. 97–124. University of Luxembourg, Luxembourg (2011)
Turaev V.G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter & Co., Berlin (1994)
Google Scholar
Waldmann S.: Poisson-Geometrie und Deformationsquantisierung: Eine Einführung. Springer, Berlin (2007)
Google Scholar
Weinstein, A., Xu, P.: Hochschild cohomology and characteristic classes for star-products. In: Geometry of Differential Equations. American Mathematical Society Translations: Series 2, vol. 186, pp. 177–194. American Mathematical Society, Providence (1998)
Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)
Article
ADS
MATH
Google Scholar