Skip to main content
Log in

Long Time Quantum Evolution of Observables on Cusp Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Eisenstein functions \({E(s)}\) are some generalized eigenfunctions of the Laplacian on manifolds with cusps. We give a version of Quantum Unique Ergodicity for them, for \({|\mathfrak{I}s| \to \infty}\) and \({\mathfrak{R}s \to d/2}\) with \({\mathfrak{R}s - d/2 \geq \log \log |\mathfrak{I}s| / \log |\mathfrak{I}s|}\). For the purpose of the proof, we build a semi-classical quantization procedure for finite volume manifolds with hyperbolic cusps, adapted to a geometrical class of symbols. We also prove an Egorov Lemma until Ehrenfest times on such manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babillot M.: On the mixing property for hyperbolic systems. Israel J. Math. 129, 61–76 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouclet, J.-M.: Strichartz inequalities on surfaces with cusps. Int. Math. Res. Notices (2016, to appear). arXiv:1405.2123

  3. Bouzouina A., Robert D.: Uniform semiclassical estimates for the propagation of quantum observables. Duke Math. J. 111(2), 223–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Verdière Yves, C.: Une nouvelle démonstration du prolongement méromorphe des séries d’Eisenstein. C. R. Acad. Sci. Paris Sér. I Math. 293(7):361–363 (1981)

  5. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, vol. 9. North-Holland, Amsterdam (1975)

  6. Coudène Y.: The Hopf argument. J. Modern Dyn. 1(1), 147–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyatlov S., Guillarmou C.: Microlocal limits of plane waves and Eisenstein functions. Ann. Sci. Éc. Norm. Supér. (4) 47(2), 371–448 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Dimassi M., Sjöstrand J.: Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Note Series, vol. 268. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  9. Dyatlov S.: Microlocal limits of Eisenstein functions away from the unitarity axis. J. Spectr. Theory 2(2), 181–202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gudmundsson S., Kappos E.: On the geometry of tangent bundles. Expo Math. 20(1), 1–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guillarmou C., Naud F.: Equidistribution of Eisenstein series on convex co-compact hyperbolic manifolds. Am. J. Math. 136(2), 445–479 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hörmander, L.: The analysis of linear partial differential operators. I. Classics in Mathematics. Springer, Berlin, 2003 (Distribution theory and Fourier analysis, Reprint of the second (1990) edition. Springer, Berlin)

  13. Jakobson, D. Quantum unique ergodicity for Eisenstein series on \({\rm PSL}_2({\bf Z})\backslash {\rm PSL}_2({\bf R})\). Ann. Inst. Fourier (Grenoble) 44(5),1477–1504 (1994)

    Article  MathSciNet  Google Scholar 

  14. Lax P.D., Phillips R.S.: Scattering Theory for Automorphic Functions, Annals of Mathematics Studies, vol. 87. Princeton University Press, Princeton (1976)

    Google Scholar 

  15. Luo, W.Z., Sarnak, P.: Quantum ergodicity of eigenfunctions on \({{\rm PSL}_2(Z)\backslash H^2}\). Inst. Hautes Études Sci. Publ. Math. 81, 207–237 (1995)

  16. Mazzeo, R., Melrose, R.B.: Pseudodifferential operators on manifolds with fibred boundaries. Asian J. Math. 2(4), 833–866 (1998) (Mikio Sato: a great Japanese mathematician of the twentieth century)

  17. Müller W.: Spectral theory for Riemannian manifolds with cusps and a related trace formula. Math. Nachr. 111, 197–288 (1983)

    Article  MathSciNet  Google Scholar 

  18. Müller W.: Spectral geometry and scattering theory for certain complete surfaces of finite volume. Invent. Math. 109(2), 265–305 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Paulin, F.: Géométrie riemannienne. Lecture notes (2014). http://www.math.u-psud.fr/~paulin/notescours/cours_georiem (page 205, equation 40)

  20. Paulin, F., Pollicott, M., Schapira, B.: Equilibrium states in negative curvature. Astérisque 373, Soc. Math. (2015). arXiv:1211.6242

  21. Petridis, Y.N., Raulf, N., Risager, M.S.: Quantum limits of eisenstein series and scattering states. Canad. Math. Bull. 56, 814–826, 827–828 (2013)

  22. Taylor M.E.: Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences, vol. 115, 2nd edn. Springer, New York (2011)

    Google Scholar 

  23. Zelditch S.: Pseudodifferential analysis on hyperbolic surfaces. J. Funct. Anal. 68(1), 72–105 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zelditch S.: Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series. J. Funct. Anal. 97(1), 1–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zworski M.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Bonthonneau.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonthonneau, Y. Long Time Quantum Evolution of Observables on Cusp Manifolds. Commun. Math. Phys. 343, 311–359 (2016). https://doi.org/10.1007/s00220-016-2573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2573-3

Keywords

Navigation