Advertisement

Communications in Mathematical Physics

, Volume 345, Issue 1, pp 185–221 | Cite as

Non-Equilibrium Steady States for Chains of Four Rotors

  • N. Cuneo
  • J.-P. Eckmann
Open Access
Article

Abstract

We study a chain of four interacting rotors (rotators) connected at both ends to stochastic heat baths at different temperatures. We show that for non-degenerate interaction potentials the system relaxes, at a stretched exponential rate, to a non-equilibrium steady state (NESS). Rotors with high energy tend to decouple from their neighbors due to fast oscillation of the forces. Because of this, the energy of the central two rotors, which interact with the heat baths only through the external rotors, can take a very long time to dissipate. By appropriately averaging the oscillatory forces, we estimate the dissipation rate and construct a Lyapunov function. Compared to the chain of length three (considered previously by C. Poquet and the current authors), the new difficulty with four rotors is the appearance of resonances when both central rotors are fast. We deal with these resonances using the rapid thermalization of the two external rotors.

Keywords

Invariant Measure Lyapunov Function External Rotor Heat Bath Central Rotor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aoki K., Lukkarinen J., Spohn H.: Energy transport in weakly anharmonic chains. J. Stat. Phys. 124, 1105–1129 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bernardin, C., Huveneers, F., Lebowitz, J.L., Liverani, C., Olla, S.: Green-kubo formula for weakly coupled systems with noise. Commun. Math. Phys. 334, 1377–1412Google Scholar
  3. 3.
    Bonetto F., Lebowitz J.L., Rey-Bellet L.: Fourier’s law: a challenge to theorists. In: Mathematical physics 2000 (London: Imp. Coll. Press, 2000), pp. 128–150Google Scholar
  4. 4.
    Bricmont J., Kupiainen A.: Towards a derivation of Fouriers law for coupled anharmonic oscillators. Commun. Math. Phys. 274, 555–626 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Carmona P.: Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stoch. Process. Appl. 117, 1076–1092 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cuneo N., Eckmann J.-P., Poquet C.: Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors. Nonlinearity 28, 2397–2421 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    De Roeck W., Huveneers F.: Asymptotic localization of energy in nondisordered oscillator chains. Commun. Pure Appl. Math. 68, 1532–1568 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Douc R., Fort G., Guillin A.: Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Process. Appl. 119, 897–923 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Eckmann J.-P., Hairer M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212, 105–164 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Entropy production in nonlinear, thermally driven hamiltonian systems. J. Stat. Phys. 95, 305–331 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Eckmann J.-P., Young L.-S.: Temperature profiles in Hamiltonian heat conduction. Europhys. Lett. 68, 790–796 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Eleftheriou M., Lepri S., Livi R., Piazza F.: Stretched-exponential relaxation in arrays of coupled rotators. Phys. D 204, 230–239 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gallavotti, G., Iacobucci, A., Olla, S.: Nonequilibrium stationary state for a damped rotator (2013) arXiv:1310.5379
  15. 15.
    Gendelman O.V., Savin A.V.: Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction. Phys. Rev. Lett. 84, 2381–2384 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Giardinà C., Livi R., Politi A., Vassalli M.: Finite thermal conductivity in 1d lattices. Phys. Rev. Lett. 84, 2144 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Hairer M.: How hot can a heat bath get?. Commun. Math. Phys. 292, 131–177 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hairer M., Mattingly J.C.: Slow energy dissipation in anharmonic oscillator chains. Commun. Pure Appl. Math. 62, 999–1032 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Iacobucci A., Legoll F., Olla S., Stoltz G.: Negative thermal conductivity of chains of rotors with mechanical forcing. Phys. Rev. E 84, 061108 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Lefevere R., Schenkel A.: Normal heat conductivity in a strongly pinned chain of anharmonic oscillators. J. Stat. Mech. Theory Exp. 2006, L02001 (2006)CrossRefGoogle Scholar
  21. 21.
    Lepri S., Livi R., Politi A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Meyn, S., Tweedie, R.L.: Markov chains and stochastic stability (Cambridge University Press, Cambridge, 2009), second edition. With a prologue by Peter W. Glynn.Google Scholar
  23. 23.
    Meyn S.P., Tweedie R.L.: Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pardoux E., Veretennikov A.Y.: On the Poisson equation and diffusion approximation. I. Ann. Probab. 29, 1061–1085 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pardoux E., Veretennikov A.Y.: On Poisson equation and diffusion approximation. II. Ann. Probab. 31, 1166–1192 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Pardoux E., Veretennikov A.Y.: On the Poisson equation and diffusion approximation. III. Ann. Probab. 33, 1111–1133 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Rey-Bellet L., Thomas L.E.: Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Commun. Math. Phys. 225, 305–329 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenevaSwitzerland
  2. 2.Section de MathématiquesUniversité de GenèveGenevaSwitzerland

Personalised recommendations