Skip to main content

Advertisement

SpringerLink
  • Communications in Mathematical Physics
  • Journal Aims and Scope
  • Submit to this journal
Non-Equilibrium Steady States for Chains of Four Rotors
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Thermo-mechanical Transport in Rotor Chains

04 May 2021

Alessandra Iacobucci, Stefano Olla & Gabriel Stoltz

NUMERICAL–ANALYTICAL METHOD FOR SEARCHING FOR THE AUTOROTATIONS OF A MECHANICAL SYSTEM WITH TWO ROTATIONAL DEGREES OF FREEDOM

01 May 2021

L. A. Klimina, A. A. Masterova, … Yu. D. Selyutskiy

Free Rotation of a Rigid Mass Carrying a Rotor with an Internal Torque

14 November 2022

A. A. Galal

Correlation Functions for a Chain of Short Range Oscillators

18 March 2021

T. Grava, T. Kriecherbauer, … K. D. T.-R. McLaughlin

Hydrodynamic Limit for a Disordered Harmonic Chain

06 September 2018

Cédric Bernardin, François Huveneers & Stefano Olla

Hydrodynamic Limit for a Disordered Quantum Harmonic Chain

24 January 2022

Amirali Hannani

A Multi-scale Limit of a Randomly Forced Rotating 3-D Compressible Fluid

06 June 2020

Prince Romeo Mensah

Continuation analysis of a nonlinear rotor system

23 June 2021

Mehmet Selim Akay, Alexander D. Shaw & Michael I. Friswell

Stability of Steady Rotation of Rotor Systems with Fluid in the Case of Anisotropic Fastening of the Rotor Axis

01 July 2018

N. V. Derendyaev & D. N. Derendyaev

Download PDF
  • Open Access
  • Published: 07 January 2016

Non-Equilibrium Steady States for Chains of Four Rotors

  • N. Cuneo1 &
  • J.-P. Eckmann1,2 

Communications in Mathematical Physics volume 345, pages 185–221 (2016)Cite this article

  • 533 Accesses

  • 18 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We study a chain of four interacting rotors (rotators) connected at both ends to stochastic heat baths at different temperatures. We show that for non-degenerate interaction potentials the system relaxes, at a stretched exponential rate, to a non-equilibrium steady state (NESS). Rotors with high energy tend to decouple from their neighbors due to fast oscillation of the forces. Because of this, the energy of the central two rotors, which interact with the heat baths only through the external rotors, can take a very long time to dissipate. By appropriately averaging the oscillatory forces, we estimate the dissipation rate and construct a Lyapunov function. Compared to the chain of length three (considered previously by C. Poquet and the current authors), the new difficulty with four rotors is the appearance of resonances when both central rotors are fast. We deal with these resonances using the rapid thermalization of the two external rotors.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Aoki K., Lukkarinen J., Spohn H.: Energy transport in weakly anharmonic chains. J. Stat. Phys. 124, 1105–1129 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bernardin, C., Huveneers, F., Lebowitz, J.L., Liverani, C., Olla, S.: Green-kubo formula for weakly coupled systems with noise. Commun. Math. Phys. 334, 1377–1412

  3. Bonetto F., Lebowitz J.L., Rey-Bellet L.: Fourier’s law: a challenge to theorists. In: Mathematical physics 2000 (London: Imp. Coll. Press, 2000), pp. 128–150

  4. Bricmont J., Kupiainen A.: Towards a derivation of Fouriers law for coupled anharmonic oscillators. Commun. Math. Phys. 274, 555–626 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Carmona P.: Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stoch. Process. Appl. 117, 1076–1092 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cuneo N., Eckmann J.-P., Poquet C.: Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors. Nonlinearity 28, 2397–2421 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. De Roeck W., Huveneers F.: Asymptotic localization of energy in nondisordered oscillator chains. Commun. Pure Appl. Math. 68, 1532–1568 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. Douc R., Fort G., Guillin A.: Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Process. Appl. 119, 897–923 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eckmann J.-P., Hairer M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212, 105–164 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Entropy production in nonlinear, thermally driven hamiltonian systems. J. Stat. Phys. 95, 305–331 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Eckmann J.-P., Young L.-S.: Temperature profiles in Hamiltonian heat conduction. Europhys. Lett. 68, 790–796 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Eleftheriou M., Lepri S., Livi R., Piazza F.: Stretched-exponential relaxation in arrays of coupled rotators. Phys. D 204, 230–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gallavotti, G., Iacobucci, A., Olla, S.: Nonequilibrium stationary state for a damped rotator (2013) arXiv:1310.5379

  15. Gendelman O.V., Savin A.V.: Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction. Phys. Rev. Lett. 84, 2381–2384 (2000)

    Article  ADS  Google Scholar 

  16. Giardinà C., Livi R., Politi A., Vassalli M.: Finite thermal conductivity in 1d lattices. Phys. Rev. Lett. 84, 2144 (2000)

    Article  ADS  Google Scholar 

  17. Hairer M.: How hot can a heat bath get?. Commun. Math. Phys. 292, 131–177 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Hairer M., Mattingly J.C.: Slow energy dissipation in anharmonic oscillator chains. Commun. Pure Appl. Math. 62, 999–1032 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Iacobucci A., Legoll F., Olla S., Stoltz G.: Negative thermal conductivity of chains of rotors with mechanical forcing. Phys. Rev. E 84, 061108 (2011)

    Article  ADS  Google Scholar 

  20. Lefevere R., Schenkel A.: Normal heat conductivity in a strongly pinned chain of anharmonic oscillators. J. Stat. Mech. Theory Exp. 2006, L02001 (2006)

    Article  Google Scholar 

  21. Lepri S., Livi R., Politi A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Meyn, S., Tweedie, R.L.: Markov chains and stochastic stability (Cambridge University Press, Cambridge, 2009), second edition. With a prologue by Peter W. Glynn.

  23. Meyn S.P., Tweedie R.L.: Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pardoux E., Veretennikov A.Y.: On the Poisson equation and diffusion approximation. I. Ann. Probab. 29, 1061–1085 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pardoux E., Veretennikov A.Y.: On Poisson equation and diffusion approximation. II. Ann. Probab. 31, 1166–1192 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pardoux E., Veretennikov A.Y.: On the Poisson equation and diffusion approximation. III. Ann. Probab. 33, 1111–1133 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rey-Bellet L., Thomas L.E.: Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Commun. Math. Phys. 225, 305–329 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Département de Physique Théorique, Université de Genève, Geneva, Switzerland

    N. Cuneo & J.-P. Eckmann

  2. Section de Mathématiques, Université de Genève, Geneva, Switzerland

    J.-P. Eckmann

Authors
  1. N. Cuneo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J.-P. Eckmann
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J.-P. Eckmann.

Additional information

Communicated by H. Spohn

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuneo, N., Eckmann, JP. Non-Equilibrium Steady States for Chains of Four Rotors. Commun. Math. Phys. 345, 185–221 (2016). https://doi.org/10.1007/s00220-015-2550-2

Download citation

  • Received: 27 April 2015

  • Accepted: 22 September 2015

  • Published: 07 January 2016

  • Issue Date: July 2016

  • DOI: https://doi.org/10.1007/s00220-015-2550-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Invariant Measure
  • Lyapunov Function
  • External Rotor
  • Heat Bath
  • Central Rotor
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.