Skip to main content
Log in

Cauchy Conformal Fields in Dimensions \({d > 2}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Holomorphic fields play an important role in 2d conformal field theory. We generalize them to \({d > 2}\) by introducing the notion of Cauchy conformal fields, which satisfy a first order differential equation such that they are determined everywhere once we know their value on a codimension 1 surface. We classify all the unitary Cauchy fields. By analyzing the mode expansion on the unit sphere, we show that all unitary Cauchy fields are free in the sense that their correlation functions factorize on the 2-point function. We also discuss the possibility of non-unitary Cauchy fields and classify them in d = 3 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fubini S., Gordon D., Veneziano G.: A general treatment of factorization in dual resonance models. Phys. Lett. B 29, 679–682 (1969)

    Article  ADS  Google Scholar 

  2. Fubini S., Veneziano G.: Algebraic treatment of subsidiary conditions in dual resonance models. Ann. Phys. 63, 12–27 (1971)

    Article  ADS  Google Scholar 

  3. Del Giudice E., Di Vecchia P., Fubini S.: General properties of the dual resonance model. Ann. Phys. 70, 378–398 (1972)

    Article  ADS  Google Scholar 

  4. Brower, R.C., Goddard, P.: Physical states in the dual resonance model. In: Varenna 1972, Proceedings of Developments in High Energy Physics (1972)

  5. Corrigan E., Goddard P.: Gauge conditions in the dual fermion model. Nuovo Cim. A 18, 339–359 (1973)

    Article  ADS  Google Scholar 

  6. Brink L., Olive D.I., Scherk J.: The gauge properties of the dual model pomeron-reggeon vertex—their derivation and their consequences. Nucl. Phys. B 61, 173–198 (1973)

    Article  ADS  Google Scholar 

  7. Friedan, D.: Introduction to Polyankov’s string theory. In: Proceedings of Summer School of Theoretical Physics: Recent Advances in Field Theory and Statistical Mechanics, Les Houches (1982)

  8. Siegel W.: All free conformal representations in all dimensions. Int. J. Modern Phys. A 4, 2015 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dymarsky, A., Zhiboedov, A.: Scale-invariant breaking of conformal symmetry. J. Phys. A. Math. Theor. 48(41) (2015)

  10. Weinberg S., Witten E.: Limits on massless particles. Phys. Lett. B 96, 59 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coleman S.R., Mandula J.: All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967)

    Article  ADS  MATH  Google Scholar 

  12. Maldacena, J., Zhiboedov, A.: Constraining conformal field theories with a higher spin symmetry. J. Phys. A 46, 214011 (2013). arXiv:1112.1016 [hep-th]

  13. Alba, V., Diab, K.: Constraining conformal field theories with a higher spin symmetry in d = 4. arXiv:1307.8092 [hep-th]

  14. Stanev, Y.S.: Constraining conformal field theory with higher spin symmetry in four dimensions. Nucl. Phys. B 876, 651–666 (2013). arXiv:1307.5209 [hep-th]

  15. Boulanger, N., Ponomarev, D., Skvortsov, E., Taronna, M.: On the uniqueness of higher-spin symmetries in AdS and CFT. Int. J. Modern Phys. A 28, 1350162 (2013). arXiv:1305.5180 [hep-th]

  16. Minwalla, S.: Restrictions imposed by superconformal invariance on quantum field theories. Adv. Theor. Math. Phys. 2, 781–846 (1998). arXiv:hep-th/9712074 [hep-th]

  17. Evans N.T.: Discrete series for the universal covering group of the 3 +  2 de sitter group. J. Math. Phys. 8(2), 170–184 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mack G.: All unitary ray representations of the conformal group SU(2,2) with positive energy. Commun. Math. Phys. 55, 1 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. In: Representation Theory of Reductive Groups (Park City, Utah, 1982), Progr. Math., vol. 40, pp. 97–143. Birkhäuser, Boston (1983)

  20. Defosseux M.: Orbit measures, random matrix theory and interlaced determinantal processes. Ann. Inst. H. Poincar Probab. Stat. 46(1), 209–249 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Enright T.J., Wallach N.R.: Embeddings of unitary highest weight representations and generalized Dirac operators. Math. Ann. 307(4), 627–646 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129. Springer, New York (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Keller.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedan, D., Keller, C.A. Cauchy Conformal Fields in Dimensions \({d > 2}\) . Commun. Math. Phys. 348, 655–694 (2016). https://doi.org/10.1007/s00220-015-2547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2547-x

Keywords

Navigation