Skip to main content
Log in

Universal Probability Distribution for the Wave Function of a Quantum System Entangled with its Environment

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A quantum system (with Hilbert space \({\mathcal {H}_{1}}\)) entangled with its environment (with Hilbert space \({\mathcal {H}_{2}}\)) is usually not attributed to a wave function but only to a reduced density matrix \({\rho_{1}}\). Nevertheless, there is a precise way of attributing to it a random wave function \({\psi_{1}}\), called its conditional wave function, whose probability distribution \({\mu_{1}}\) depends on the entangled wave function \({\psi \in \mathcal {H}_{1} \otimes \mathcal {H}_{2}}\) in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of \({\mathcal {H}_{2}}\) but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about \({\mu_{1}}\), e.g., that if the environment is sufficiently large then for every orthonormal basis of \({\mathcal {H}_{2}}\), most entangled states \({\psi}\) with given reduced density matrix \({\rho_{1}}\) are such that \({\mu_{1}}\) is close to one of the so-called GAP (Gaussian adjusted projected) measures, \({GAP(\rho_{1})}\). We also show that, for most entangled states \({\psi}\) from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval \({[E, E+ \delta E]}\)) and most orthonormal bases of \({\mathcal {H}_{2}}\), \({\mu_{1}}\) is close to \({GAP(\rm {tr}_{2} \rho_{mc})}\) with \({\rho_{mc}}\) the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then \({\mu_{1}}\) is close to \({GAP(\rho_\beta)}\) with \({\rho_\beta}\) the canonical density matrix on \({\mathcal {H}_{1}}\) at inverse temperature \({\beta=\beta(E)}\). This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193–1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley P.: Probability and measure. Wiley, New York (1986)

    MATH  Google Scholar 

  2. Collins, B.: Intégrales matricielles et Probabilités Non-Commutatives. Ph. D. thesis, Department of Mathematics, Université Paris 6 (2003). http://tel.archives-ouvertes.fr/docs/00/04/59/88/PDF/tel-00004306

  3. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992). arXiv:quant-ph/0308039

  4. Gaspard P., Nagaoka M.: Non-Markovian stochastic Schrödinger equation. J. Chem. Phys. 111(13), 5676–5690 (1999)

    Article  ADS  Google Scholar 

  5. Gemmer, J., Mahler, G., Michel, M.: Quantum thermodynamics: emergence of thermodynamic behavior within composite quantum systems. Lecture notes in physics, vol. 657. Springer, Berlin (2004)

  6. Georgii H.-O.: The equivalence of ensembles for classical systems of particles. J. Stat. Phys. 80, 1341–1378 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Goldstein, S., Lebowitz, J.L., Mastrodonato, C., Tumulka, R., Zanghì, N.: Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81, 011109 (2010). arXiv:0911.1724

  8. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghì, N.: On the distribution of the wave function for systems in thermal equilibrium. J. Stat. Phys. 125, 1193–1221 (2006). arXiv:quant-ph/0309021

  9. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghì, N.: Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006). arXiv:cond-mat/0511091

  10. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghì, N.: Any orthonormal basis in high dimension is uniformly distributed over the sphere. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, in print (2016). arXiv:1406.2576

  11. Jozsa R., Robb D., Wootters W.K.: Lower bound for accessible information in quantum mechanics. Phys. Rev. A 49, 668–677 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Linden, N., Popescu, S., Short, A.J., Winter, A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009). arXiv:0812.2385

  13. Martin-Löf, A.: Statistical mechanics and the foundations of thermodynamics, Lecture notes in physics, vol. 101. Springer, Berlin (1979)

  14. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces, Lecture notes in mathematics vol. 1200. Springer, Berlin (1986)

  15. Pandya, V., Tumulka, R.: Spin and the thermal equilibrium distribution of wave functions. J. Stat. Phys. 154, 491–502 (2014). arXiv:1306.1659

  16. Popescu, S., Short, A.J., Winter, A.: The foundations of statistical mechanics from entanglement: Individual states vs. averages. (2005, Preprint). arXiv:quant-ph/0511225

  17. Popescu S., Short A.J., Winter A.: Entanglement and the foundation of statistical mechanics. Nat. Phys. 21(11), 754–758 (2006)

    Article  Google Scholar 

  18. Reimann, P.: Typicality for generalized microcanonical ensembles. Phys. Rev. Lett. 99, 160404 (2007). arXiv:0710.4214

  19. Reimann P.: Typicality of pure states randomly sampled according to the Gaussian adjusted projected measure. J. Stat. Phys. 132(5), 921–935 (2008). arXiv:0805.3102

  20. Schmidt decomposition. In: Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Schmidt_decomposition. Accessed 19 Dec 2009

  21. Schrödinger E.: Statistical thermodynamics, 2nd edn. University Press, Cambridge (1952)

    Google Scholar 

  22. Tumulka, R., Zanghì, N.: Smoothness of wave functions in thermal equilibrium. J. Math. Phys. 46, 112104 (2005). arXiv:math-ph/0509028

  23. von Neumann, J.: Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Zeitschrift für Physik 57, 30–70 (1929). English translation Eur. Phys. J. H 35, 201–237 (2010). arXiv:1003.2133

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderich Tumulka.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, S., Lebowitz, J.L., Mastrodonato, C. et al. Universal Probability Distribution for the Wave Function of a Quantum System Entangled with its Environment. Commun. Math. Phys. 342, 965–988 (2016). https://doi.org/10.1007/s00220-015-2536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2536-0

Keywords

Navigation