Abstract
In this paper we study various properties of the double ramification hierarchy, an integrable hierarchy of hamiltonian PDEs introduced in Buryak (CommunMath Phys 336(3):1085–1107, 2015) using intersection theory of the double ramification cycle in the moduli space of stable curves. In particular, we prove a recursion formula that recovers the full hierarchy starting from just one of the Hamiltonians, the one associated to the first descendant of the unit of a cohomological field theory. Moreover, we introduce analogues of the topological recursion relations and the divisor equation both for the Hamiltonian densities and for the string solution of the double ramification hierarchy. This machinery is very efficient and we apply it to various computations for the trivial and Hodge cohomological field theories, and for the r -spin Witten’s classes. Moreover, we prove the Miura equivalence between the double ramification hierarchy and the Dubrovin-Zhang hierarchy for the Gromov-Witten theory of the complex projective line (extended Toda hierarchy).
This is a preview of subscription content,
to check access.References
Buryak A.: Double ramification cycles and integrable hierarchies. Commun. Math. Phys. 336(3), 1085–1107 (2015)
Buryak A.: Dubrovin-Zhang hierarchy for the Hodge integrals. Commun. Number Theory Phys. 9(2), 239–271 (2015)
Buryak A., Posthuma H., Shadrin S.: On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket. J. Geomet. Phys. 2012(2), 1639–1651 (2012)
Buryak A., Posthuma H., Shadrin S.: A polynomial bracket for the Dubrovin-Zhang hierarchies. J. Diff. Geom. 92(1), 153–185 (2012)
Buryak A., Shadrin S., Spitz L., Zvonkine D.: Integrals of psi-classes over double ramification cycles. Am. J. Math. 137(3), 699–737 (2015)
Carlet G., Dubrovin B., Zhang Y.: The extended Toda hierarchy. Moscow Math. J. 4(2), 313–332 (2004)
Cavalieri R., Marcus S., Wise J.: Polynomial families of tautological classes on \({\mathcal{M}^{rt}_ {g,n}}\). J. Pure Appl. Algebra 216(4), 950–981 (2012)
Chiodo A.: The Witten top Chern class via K-theory. J. Algebraic Geom. 15(4), 681–707 (2006)
Dubrovin, B.: Geometry of 2D topological field theory. In: Integrable Systems and Quantum Groups, Lecture Notes in Mathematics, vol. 1620, pp. 120–348 (1996)
Dubrovin B., Zhang Y.: Virasoro symmetries of the extended Toda hierarchy. Commun. Math. Phys. 250(1), 161–193 (2004)
Dubrovin, B.A., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, p. 295, a new 2005 version of arXiv:math/0108160v1
Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. GAFA 2000 Visions in Mathematics special volume, part II, pp. 560–673 (2000)
Faber C., Pandharipande R.: Hodge integrals, partition matrices, and the λ g -conjecture. Ann. Math. 157(1), 97–124 (2003)
Faber C., Shadrin S., Zvonkine D.: Tautological relations and the r -spin Witten conjecture. Annales Scientifiques de l’Ecole Normale Superieure 43(4), 621–658 (2010)
Fabert O., Rossi P.: String, dilaton and divisor equation in Symplectic Field Theory. Int.Math. Res. Not. IMRN 19, 4384–4404 (2011)
Gelfand I.M., Dikii L.A.: Fractional powers of operators and Hamiltonian systems. Funct. Anal. Appl. 10, 259–273 (1976)
Getzler, E.: Topological recursion relations in genus 2. In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto 1997), pp. 73–106. World Scientific Publishing, River Edge (1998)
Getzler, E.: TheVirasoro conjecture for Gromov-Witten invariants, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 147–176, Contemp. Math., 241, Am. Math. Soc., Providence, RI (1999)
Getzler E., Pandharipande R.: Virasoro constraints and the Chern classes of the Hodge bundle. Nucl. Phys. B 530(3), 701–714 (1998)
Givental A.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Moscow Math. J. 1(4), 551–568 (2001)
Hain, R.: Normal functions and the geometry of moduli spaces of curves. In: Handbook of Moduli, vol. I, pp. 527–578, Adv. Lect. Math. (ALM), 24. Int. Press, Somerville (2013)
Hori K.: Constraints for topological strings in D ≥ 1. Nucl. Phys. B 439(1–2), 395–420 (1995)
Kontsevich M., Manin Y.u.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164(3), 525–562 (1994)
Marcus, S.,Wise, J.: Stable maps to rational curves and the relative Jacobian. arXiv:1310.5981
Pandharipande R.: The Toda equations and the Gromov-Witten theory of the Riemann sphere. Lett. Math. Phys. 53(1), 59–74 (2000)
Pandharipande R., Pixton A., Zvonkine D.: Relations on \({\overline{\mathcal{M}}_{g,n}}\) via 3-spin structures. J. Am. Math. Soc. 28(1), 279–309 (2015)
Polishchuk, A., Vaintrob, A.: Algebraic construction of Witten’s top Chern class. Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), pp. 229–249, Contemp. Math., 276, Am. Math. Soc., Providence, RI (2001)
Rossi, P.: Integrable systems and holomorphic curves. In: Proceedings of the Gökova Geometry-Topology Conference 2009, pp. 34–57. Int. Press, Somerville (2010)
Rossi, P.: Nijenhuis operator in contact homology and descendant recursion in symplectic field theory. In: Proceedings of the Gökova Geometry-Topology Conference 2014. International Press (2015). arXiv:1201.1127
Satsuma J., Ablowitz M.J., Kodama Y.: On an internal wave equation describing a stratified fluid with finite depth. Phys. Lett. A 73(4), 283–286 (1979)
Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. In: Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), pp. 235–269. Publish or Perish, Houston (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by N. Reshetikhin
Rights and permissions
About this article
Cite this article
Buryak, A., Rossi, P. Recursion Relations for Double Ramification Hierarchies. Commun. Math. Phys. 342, 533–568 (2016). https://doi.org/10.1007/s00220-015-2535-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-015-2535-1